Diabetes Metab J > Volume 31(1); 2007 > Article
Korean Diabetes Journal 2007;31(1):9-21.
DOI: https://doi.org/10.4093/jkda.2007.31.1.9    Published online January 1, 2007.
Glucose-dependent Insulin Secretion from Genetically Engineered K-cells Using EBV-based Episomal Vector.
Ju Hee Kim, Sung Dae Moon, Seung Hyun Ko, Yu Bai Ahn, Ki Ho Song, Hyang Sook Lim, Sook Kyung Lee, Soon Jip Yoo, Hyun Shik Son, Kun Ho Yoon, Bong Yun Cha, Ho Young Son, Sung Joo Kim, Je Ho Han
1Department of Internal Medicine, The Catholic University of Korea, Korea.
2Department of Our Lady of Mercy Hospital, The Catholic University of Korea, Korea.
3Research Institute of Immunobiology, The Catholic University of Korea, Korea.
4Research Institute of Molecular Genetics, The Catholic University of Korea, Korea.
Abstract
BACKGROUND
Type 1 diabetes mellitus is an autoimmune disease resulting in destruction of the pancreatic beta cells. Insulin gene therapy for these patients has been vigorously researched. The strategy for achieving glucose-dependent insulin secretion in gene therapy relies on glucose-responsive transcription of insulin mRNA and the constitutive secretory pathway of target non-beta cells. We observed that genetically engineered K-cells using Epstein-Barr virus (EBV)-based episomal vector can produce glucose-regulated insulin production. METHODS: Green fluorescent protein (GFP) or rat-preproinsulin (PPI) expression cassette transcriptionally controlled by the promoter of glucose dependent insulinotropic peptide (GIPP) is fused to pCEP4 containing the origin of replication (oriP) and Epstein-Barr virus nuclear antigen 1 (EBNA-1). CMV promoter was replaced by subcloning the GIPP into pCEP4 to generate pGIPP/CEP4. Two recombinant EBV-based episomal vectors, pGIPP/GFP/CEP4 and pGIPP/PPI/CEP4, were constructed. pGIPP/GFP/CEP4 and pGIPP/PPI/CEP4 containing K-cell specific GIPP were co-transfected into STC-1. K-cell was isolated from the clonal expansion of the fluorescent cells selected by hygromycin treatment in STC-1, and were analyzed for the expression of glucokinase (GK) or transcription factors involved in pancreas development. K-cells concurrently transfected with pGIPP/PPI/CEP4 and pGIPP/GFP/CEP4 were analyzed for the transcripts of PPI by RT-PCR, and for the glucose dependent insulin expression by immunocytochemistry or insulin assay using ultra-sensitive rat-specific insulin ELISA kit. RESULT: STC-1 was stably-transfected with pGIPP/GFP/CEP4 along with pGIPP/PPI/CEP4. Genetically selected fluorescent K-cells expressed GK and transcription factors involved in pancreas development. And K-cells transfected with pGIPP/PPI/CEP4 contained detectable levels of PPI transcripts and showed glucose-dependent immunoreactive insulin secretion. CONCLUSION: We identified genetically engineered K-cells which exert a glucose-dependent insulin expression using EBV-based episomal vector. The similarities between K-cells and pancreatic beta cells support that K-cells may make effective and ideal targeting cells for insulin gene therapy or alternative cell therapy.
Key Words: Epstein-Barr virus-based episomal vector, GIP promoter, Insulin gene therapy, K-cell
TOOLS
METRICS Graph View
  • 2 Crossref
  •   Scopus
  • 1,047 View
  • 13 Download
Related articles

Treatment of Type 1 Diabetes through Genetically Engineered K-cell Transplantation in a Mouse Model.2009 December;33(6)



ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
101-2104, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea​
Tel: +82-2-714-9064    Fax: +82-2-714-9084    E-mail: diabetes@kams.or.kr                

Copyright © 2022 by Korean Diabetes Association.

Developed in M2PI

Close layer