Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Articles

Page Path
HOME > Diabetes Metab J > Volume 22(3); 1998 > Article
Original Article Effects of Free Fatty Acids on Glutathione Redox Status in Cultured Endothelial Cells.
Joong Yeol Park, Chul Hee Kim, Yun Ey Chung, Hong Kyu Kim, Young Il Kim, Sung Kwan Hong, Jae Dam Lee, Ki Up Lee
Diabetes & Metabolism Journal 1998;22(3):262-270
DOI: https://doi.org/
Published online: January 1, 2001
  • 936 Views
  • 19 Download
  • 0 Crossref
  • 0 Scopus

BACKGROUND
Although plasma free fatty acids (FFA) are frequently elevated in diabetes mellitus, its role in the pathogenesis of diabetic vascular complications has not been well investigated. Recent stuclies reported that FFA may cause endothelial dysfunction through an enhancement of oxidative damage by decreasing glutathione redox cycle, an important anti-oxidant defense system in endothelial cells. In this study, we examined the effects of increased availability of FFA on intracellular glutathione redox cycle. METHODS: Bovine pulonary endothelial cells were exposed to 90 umol/L linoleic acid with or without 0.1 mM 2-bromopalmitate, an inhibitor of mitochondrial fatty acid oxidation, for 6hr. Components of the glutathione redox cycle such as total glutathione, reduced glutathione(GSH) and oxidized glutathione(GSSG) concentrations were measured by HPLC. RESULTS: Total glutathione concentration in cultured endothelial cells exposed to linoleic acid was significantly lower than that in control cells (10.8+ 0.5 vs 14.1+0.8 umol/g protein, P<0.05). Linoleic acid significantly decreased GSH concentrations (10.5+0.4 vs. 13.8+0.5 pmol/g protein, P<0.05) and the ratio of GSH/GSSG(26.3+1.3 vs. 47.0+2,1, P<0.05). Compared to cells exposed linoleic acid alone, total glutathione(13.5+0.5umol/g protein, P<0.05) and GSH concentration(13.2+0.4 pmol/g protein, P<0.05) significantly increased in cells treated with 2-bromopalmitate and linoleic acid. The ratio of GSH/GSSG in cells treated with 2-bromopalmitate and linoleic acid was higher th.an that in cells exposed to linoleic acid alone(44.1+1.3, P<0.05). CONCLUSION: Increased provision of FFA resulted in a derangement of glutathione redox cycle in cultured endothelial cells, which appears to be related to an increase in mitochondrial FFA oxidation. These results suggested that FFA can increase the risk of diabetic vascular complications.

  • Cite
    CITE
    export Copy
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Effects of Free Fatty Acids on Glutathione Redox Status in Cultured Endothelial Cells.
    Korean Diabetes J. 1998;22(3):262-270.   Published online January 1, 2001
    Close
Related articles
Park JY, Kim CH, Chung YE, Kim HK, Kim YI, Hong SK, Lee JD, Lee KU. Effects of Free Fatty Acids on Glutathione Redox Status in Cultured Endothelial Cells.. Diabetes Metab J. 1998;22(3):262-270.
DOI: https://doi.org/.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP