Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Articles

Page Path
HOME > Diabetes Metab J > Volume 26(4); 2002 > Article
Original Article Effect of Transforming Growth Factor-Induced Gene Product, beta ig-h3 on Proliferation, Migration, and Adhesion of Aortic Smooth Muscle Cells Cultured in High Glucose.
Sung Woo Ha, Gui Hwa Jung, He Jin Yeo, Jong Sup Bae, Soon Hee Lee, Jung Guk Kim, Rang Woon Park, In San Kim, Bo Wan Kim
Diabetes & Metabolism Journal 2002;26(4):286-295
DOI: https://doi.org/
Published online: August 1, 2002
  • 982 Views
  • 16 Download
  • 0 Crossref
  • 0 Scopus
1Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Korea.
2Department of Biochemistry, Kyungpook National University, School of Medicine, Daegu, Korea.
prev next

BACKGROUND
Diabetes mellitus is associated with a substantial increase in the prevalence of atherosclerotic disease. There are many factors which are involved in development of these processes. Transforming growth factor (TGF-beta) is known to be an important factor in the pathogenesis of diabetic vascular complications. TGF-beta-induced gene-h3 (beta ig-h3) is an adhesive molecule whose expression is induced by TGF-beta. Considering that TGF-beta plays an important role in diabetic complications and that beta ig-h3 is induced by TGF-beta, we hypothesized that beta ig-h3 may also play a role in the development of diabetic angiopathy. Then, we examined the effects of beta ig-h3 on biologic function of vascular smooth muscle cells (VSMCs) and potential roles of beta ig-h3 in the pathognesis of diabetic angiopathy. METHODS: VSMCs were isolated from rat thoracic aorta. We conditioned cells with different concentration of TGF-beta or glucose. We measured TGF-beta and beta ig-h3 protein in cell supernatant by ELISA. We also examined whether TGF-beta involves in high glucose-induced beta ig-h3 expression. Finally, we did proliferation, migration, and adhesion assay to investigate biologic function of beta ig-h3 in VSMCs. RESULTS: Our results demonstrated that TGF-beta induced beta ig-h3 expression in VSMCs in dose dependent manners. High glucose induced TGF expression as well as beta ig-h3 protein. Finally, beta ig-h3 was found to support the proliferation, migration, and adhesion of rat VSMCs. CONCLUSION: These results suggest that high glucose-and TGF-beta-induced beta ig-h3 may play an important role in diabetic angiopathy by regulating proliferation, migration, and adhesion of VSMCs.

  • Cite
    CITE
    export Copy
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Effect of Transforming Growth Factor-Induced Gene Product, beta ig-h3 on Proliferation, Migration, and Adhesion of Aortic Smooth Muscle Cells Cultured in High Glucose.
    Korean Diabetes J. 2002;26(4):286-295.   Published online August 1, 2002
    Close
Related articles
Ha SW, Jung GH, Yeo HJ, Bae JS, Lee SH, Kim JG, Park RW, Kim IS, Kim BW. Effect of Transforming Growth Factor-Induced Gene Product, beta ig-h3 on Proliferation, Migration, and Adhesion of Aortic Smooth Muscle Cells Cultured in High Glucose.. Diabetes Metab J. 2002;26(4):286-295.
DOI: https://doi.org/.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP