Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Articles

Page Path
HOME > Diabetes Metab J > Volume 40(2); 2016 > Article
Original Article
Clinical Care/Education Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus?
Dong-Lim Kim1, Sun-Doo Kim2, Suk Kyeong Kim1, Sooyoun Park1, Kee-Ho Song1orcid
Diabetes & Metabolism Journal 2016;40(2):118-128.
DOI: https://doi.org/10.4093/dmj.2016.40.2.118
Published online: November 20, 2015
  • 5,458 Views
  • 71 Download
  • 21 Web of Science
  • 19 Crossref
  • 25 Scopus

1Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea.

2Department of Internal Medicine, Graduate School of Medicine, Konkuk University, Seoul, Korea.

corresp_icon Corresponding author: Kee-Ho Song. Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea. skh2k@kuh.ac.kr
*Dong-Lim Kim and Sun-Doo Kim contributed equally to this study as first authors.
• Received: May 12, 2015   • Accepted: August 13, 2015

Copyright © 2016 Korean Diabetes Association

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

prev next
  • Background
    We evaluated the diagnostic rate of diabetes using fasting plasma glucose (FPG), 2-hour plasma glucose (2h PG) after 75 g oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) levels, and we elucidated the pathophysiologic characteristics and risk factors that give rise to diabetes in patients with prediabetes.
  • Methods
    The data of 236 patients who had the OGTT at Konkuk University Hospital were analyzed. Fasting, 30, and 120 minutes blood glucose levels and insulin levels were measured. The diagnostic rate of diabetes was assessed using FPG, 2h PG, and HbA1c levels. The clinical data and insulin resistance and secretion evaluations were compared using indexes according to the fasting glucose level.
  • Results
    Among 236 subjects, 97 (41.1%) were diabetics and 102 (43.2%) were prediabetics. The rate of diabetes diagnosis by one of the individual criteria was 56.7%, 53.6%, and 84.5% for FPG, HbA1c, and 2h PG, respectively. When two criteria were used to diagnose diabetes, 72.2% of the diabetic patients were identified by FPG and HbA1c, while 100% were identified by FPG and 2h PG, and 91.7% were identified by 2h PG and HbA1c. The HbA1c cut-off value for 2h PG ≥200 mg/dL was 6.1%, and the FPG cut-off value was 115 mg/dL. In impaired fasting glucose subjects, the HbA1c level, Matsuda index, and insulinogenic index were associated with risk of occurrence of overt diabetes (P<0.01).
  • Conclusion
    This study suggests that performing additional OGTT for patients with FPG ≥110 mg/dL or HbA1c ≥6.1% is helpful to reclassify their glucose tolerance status and evaluate their potential for progressing to overt diabetes.
Diabetes mellitus (DM) and its related complications, such as cardiovascular diseases, acquired blindness, chronic kidney disease, and non-traumatic limb loss, are major causes of morbidity and mortality in Korea [1]. According to a recent report by the International Diabetes Federation, approximately 382 million people were diagnosed with diabetes in 2013, and it is predicted that this will increase to approximately 600 million by 2035 [2]. It was actually estimated that the number of people suffering from diabetes will reach 382 million by 2030 in 2004, but in fact, this number was already reached by 2013, indicating that the number of diabetic patients is increasing much faster than estimated [3]. Such a phenomenon has also been observed in Korea, where the prevalence of diabetes has risen from 8.9% to 12.4% from 2001 to 2010 [4]. Furthermore, the prevalence of prediabetes has also been reported to be 38.3%, implying that the increasing trend of diabetes will continue [4]. Additionally, more of the younger populations are now suffering from diabetes due to westernized lifestyles and eating habits, and there is an increasing rate of obesity, which suggests that diabetes will remain as a public health burden [5]. It has already been proven by multiple studies that strict blood glucose control is essential to prevent chronic complications of diabetes. Tight glycemic control through active intervention soon after diagnosis has been shown to prevent microvascular complications as well as macrovascular complications, denoting that early and active treatment is important [67]. In addition, identifying patients with impaired glucose tolerance (IGT) or impaired fasting glucose (IFG), which is a previous stage of diabetes, and inhibiting their further progression by taking preventive measures can also be another method to relieve the socioeconomic burden caused by diabetes [8].
The currently used methods to identify diabetes include the fasting plasma glucose (FPG) level test, oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) level test [9]. OGTT used to be the gold standard for diagnosing diabetes and prediabetes; however, it is now being used less because of its low reproducibility and time-consuming disadvantages [10]. However, the diagnostic value of OGTT now requires a re-evaluation considering the fact that diabetic patients with increasing postprandial glucose can be omitted due to the low concordance rate of the standards for diagnosing diabetes between FPG, 2-hour plasma glucose (2h PG) after 75 g OGTT, and HbA1c levels, while OGTT can reveal insulin resistance and β-cell dysfunction that are the fundamental pathophysiology of the state of diabetes [11]. Furthermore, it has been reported that the diagnosis of diabetes is difficult solely based on FPG and HbA1c levels because postprandial glucose increases before fasting glucose in Korean diabetic patients aged more than 60 years [12].
Here, we re-evaluated the diagnostic value of OGTT for diabetes and prediabetes with patients who underwent OGTT between September 2010 and September 2014. The necessity of OGTT for further classification of glucose dysregulation status was determined by investigating the differences in pathophysiologic characteristics of the occurrence of diabetes in patients with IFG according to their fasting glucose level.
Study population
The data of patients who were reported to have a problem with FPG (≥100 mg/dL) during regular medical checkups and received an OGTT from September 2010 to September 2014 in the division of Endocrinology, Department of Internal Medicine, Konkuk University Hospital, were collected. Additionally, the data of 23 healthy volunteers who took the OGTT and 18 patients who received gestational diabetes mellitus treatment and subsequently took the OGTT at 6 to 8 weeks postpartum were included. Patients with a history of diabetes or currently undergoing medical therapy were excluded. Female patients who continued to use insulin syringes after gestational diabetes were also excluded. Informed consent was obtained from healthy volunteers, and the protocols were approved by the Konkuk University Hospital Institutional Review Board.
Measurements
Systolic and diastolic blood pressures were measured on the left upper arm after 5 minutes of rest in a sitting position using an automatic blood pressure monitor (HEM-907-E; OMROM, Tokyo, Japan). Abdominal circumference was measured in a standing position at the midway between the lower costal margin and the iliac crest. After fasting for 8 hours or more, blood was drawn from the antecubital vein of each participant. The samples were properly processed, refrigerated at 2℃ to 8℃, and analyzed within 24 hours of transportation. Fasting glucose was measured using a Hitachi Automatic Analyzer 7600 (Hitachi, Tokyo, Japan). High-performance liquid chromatography-723G7 (Tosoh, Tokyo, Japan) was used to check HbA1c. Insulin concentrations were estimated using an electrochemiluminescence method (COBAS E 411; Roche Diagnostics, Mannheim, Germany). The intra-assay and interassay coefficients of variation for the biochemical assays ranged between 3.1% and 7.6%. The blood levels of total cholesterol, triglycerides, high density lipoprotein, and low density lipoprotein cholesterol levels were measured using a Toshiba 200FR Autoanalyser (Toshiba Medical Systems Co. Ltd., Tokyo, Japan). High-sensitivity C-reactive protein was measured with an immunoturbidimetric method (CRP II Latex X2; Denka Seiken Co. Ltd., Tokyo, Japan) using an autoanalyzer (Toshiba).
Calculations
For evaluation of insulin resistance, the homeostasis model assessment of insulin resistance (HOMA-IR), the modified Matsuda index for whole body insulin sensitivity, and the Gutt insulin sensitivity index (ISI) were estimated as follows [13141516]:
HOMA-IR=Ins0×Glc0405dmj-40-118-e001.jpg
Matsuda index=10,000Ins0×Glc0×mean OGTT glucose×mean OGTT insulindmj-40-118-e002.jpg
Gutt ISI=75,000+Glc0-Glc120×0.19×body weight120×logIns0+Ins120/2×Glc0+Glc120/20dmj-40-118-e003.jpg
β-Cell function was measured using the homeostasis model assessment of pancreatic β-cell function (HOMA-B), the insulinogenic index (IGI), and the oral disposition index (DI) by calculating as follows [1317]:
HOMA-B=Ins0×360Glc0-63dmj-40-118-e004.jpg
IGI=Ins30-Ins0Glc30-Glc0dmj-40-118-e005.jpg
DI= Matsuda index×IGI
Ins0, fasting plasma insulin (µIU/mL); Ins30, plasma insulin 30 minutes after glucose intake (µIU/mL); Ins120, plasma insulin 120 minutes after glucose intake (µIU/mL); Glc0, fasting plasma glucose (mg/dL); Glc30, plasma glucose 30 minutes after glucose intake (mg/dL); and Glc120, plasma glucose 120 minutes after glucose intake (mg/dL).
Total area under the curve (AUC) for insulin and AUC for glucose were calculated using the trapezoidal rule, and a ratio of the two was created (AUCins/glu). The glycemic status outcomes for this study were defined by the following American Diabetes Association criteria [9]: diabetes as FPG ≥126 mg/dL or 2h PG ≥200 mg/dL, or both; isolated IFG (iIFG) as FPG 100 to 125 mg/dL and 2h PG <140 mg/dL; isolated IGT (iIGT) as 2h PG after 75 g OGTT 140 to 199 mg/dL and FPG <100 mg/dL; NGT as FPG <100 mg/dL and 2h PG <140 mg/dL; and combined IFG and IGT (IFG+IGT) as FPG 100 to 125 mg/dL and 2h PG 140 to 199 mg/dL. Prediabetes was defined as iIFG, iIGT, or combined IFG and IGT.
Statistical analysis
All analyses were conducted using SPSS version 19.0 (IBM Co., Armonk, NY, USA). Data were presented as the mean±standard deviation for the continuous variables and the number of cases and as a percentage of the nominal variables. Statistical significance for comparisons between two groups was tested using the Mann-Whitney U test for continuous variables. Analysis of variance was used to compare the mean of three or more groups. Categorical variables were compared using Pearson chi-square test or Fisher exact test. The pointwise area under the receiver operating characteristic (ROC) curve was used to define the FPG, 2h PG, and A1c cut-off values for diagnosing diabetes. To identify the factors involved in overt diabetes mellitus in the subgroup whose FPG was between 100 and 125 mg/dL, logistic-regression models adjusted for body mass index (BMI), FPG, HbA1c, C-peptide, free fatty acid, triglycerides, Matsuda index, and IGI were used. Statistical significance was defined as a 2-tailed P<0.05.
Baseline characteristics
The baseline characteristics and metabolic parameters of the subjects are shown in Table 1. The study subjects included 122 men and 114 women. The subjects were divided into five groups according to the glucose tolerance state: NGT, iIFG, iIGT, IFG+IGT, and overt DM.
Among 236 subjects, 97 (41.1%) were diabetics, 102 (43.2%) were prediabetics (iIFG, iIGT, and IFG+IGT groups), and 37 (15.7%) had normal glucose tolerance. The mean age was higher in the prediabetes and overt DM group compared with the NGT group (P<0.05). BMI was high in the IFG plus IGT and overt DM groups compared with the NGT group (22.57±3.58, 25.33±3.13, and 25.83±3.05, respectively). The systolic and diastolic blood pressures were high in the overt DM group compared to the NGT group (P<0.05). The mean HbA1c levels in NGT, iIFG, iIGT, IFG+IGT, and overt DM subjects were 5.53±0.35, 5.80±0.41, 6.00±0.38, 6.05±0.43, and 6.59±0.58, respectively (P<0.001).
Insulin resistance (HOMA-IR, Matsuda index, Gutt ISI) and β-cell function (HOMA-B, IGI, DI) parameters showed significant differences in the prediabetes and overt diabetes groups compared with controls (NGT). The Matsuda index and Gutt ISI were lower in the combined IFG+IGT group and overt DM group compared with the iIFG group (Table 1).
Concordance rate among FPG, 2h PG, and HbA1c criteria for the diagnosis of diabetes
Among 97 diabetic patients, 30 patients (30.9%) satisfied all of the FPG, HbA1c, and 2h PG standards; 41.2% satisfied the FPG and 2h PG standards; 38.1% satisfied the FPG and HbA1c standards; and 46.4% satisfied the 2h PG and HbA1c standards. When only one of the individual criteria was used to diagnose diabetes, the rate of diabetes diagnosis was 56.7%, 53.6%, and 84.5% by FPG, HbA1c, and 2h PG, respectively (Fig. 1). When two of these criteria were used to diagnosis diabetes, 72.2% of diabetic patients were identified by FPG and HbA1c, while 100% were identified by FPG and 2h PG, and 91.7% were identified by 2h PG and HbA1c.
Optimal cut-off values of FPG, 2h PG, and HbA1C for detecting diabetes
For the diagnosis of diabetes with criteria of FPG ≥126 mg/dL, an HbA1c cut-off value of 6.2% and 2h PG value of 190 mg/dL were required. For the diagnosis of diabetes with criteria of 2h PG ≥200 mg/dL, an HbA1c cut-off value of 6.1% and FPG value of 115 mg/dL were required. For the diagnosis of diabetes with criteria of HbA1c ≥6.5%, an FPG cut-off value of 117 mg/dL and 2h PG value of 188 mg/dL were required (Fig. 2).
The differences in demographic and metabolic characteristics between each group after subdivision of IFG subjects according to FPG level
The IFG groups were subdivided into group 1 (100≤FPG<110) and group 2 (110≤FPG<126) according to previous Korean epidemiologic data [18] and were compared with the control group. Glucose dysregulation status, degree of insulin resistance, and β-cell dysfunction were worse in groups 1 and 2 compared with the normal controls. In the case of group 2, whose FPG level was higher than group 1, the postload 30 and 120 minutes glucose and HbA1c levels were higher; the portion of overt DM was also higher in group 2, with 38.5% compared with the 13.3% of group 1 (P=0.004) (Table 2). When comparing groups 1 and 2 from the point of view of the two basic pathophysiologies of the state of diabetes, insulin resistance represented by the HOMA-IR, Matsuda index, and Gutt ISI, did not show any difference. However, HOMA-B, IGI, and DI, which represent β-cell function, were statistically significantly lower in group 2 compared with group 1 (Table 2).
Risk factors associated with overt DM in a subgroup with FPG 100 to 125 mg/dL.
Patients who were diagnosed with prediabetes with a fasting glucose of 100 to 125 mg/dL and patients who were diagnosed with diabetes were compared for risk factors of diabetes (Table 3). We found that high HbA1c, high HOMA-IR, low IGI, and low DI were associated with the occurrence of diabetes even if the patients were within the same fasting glucose range (Table 3).
To uncover the variables related to overt diabetes in the IFG group, we performed a multiple logistic regression analysis and discovered that the levels of HbA1c, Matsuda Index, and IGI were statistically significantly correlated with overt diabetes (Table 4).
The results showed that it is significantly more accurate to use OGTT in addition to FPG and HbA1c tests when diagnosing diabetes. In addition, we also showed that even if the blood glucose level is within the IFG range, β-cell dysfunction progresses with increasing FPG levels, which in turn raises the possibility of having overt diabetes. Furthermore, we found that the level of HbA1c, Matsuda index, and IGI are associated factors that increase the risk of having overt diabetes.
In this study, we confirmed the results of previous studies that claimed the low concordance rate between the standards of the three methods used to diagnose diabetes [181920]. This low concordance rate may be partly due to low mean HbA1c levels (6.5%±0.58%). In diabetic patients with more than a 9% HbA1c level, the diagnostic concordance rate between FPG, 2h PG, and HbA1c level has been reported to be relatively high [21]. However, we could not assess the concordance rate of the three methods according to HbA1c levels because of the low number of patients with an HbA1c level >7%.
A total of 97 diabetic patients who were diagnosed by either FPG or 2h PG with OGTT were analyzed, and within these subjects, only 41.2% were diagnosed with diabetes by both FPG and 2h PG, which is similar to the results from a pooled analysis in a previous Korean epidemiological study that reported 46%. Additionally, only 30.9% (n=30) of the patients matched the criteria for all three methods, which was similar to the 31.9% reported in previous research based on a Korean population [12]. These results directly indicated the low concordance rate of the criteria of the three methods; therefore, diagnosing patients with diabetes based on only one of these methods will lead to omitting a large portion of other diabetic patients. In another point of view, when diabetes was classified based on FPG and HbA1c without 2h PG, 27.8% of the patients were misclassified as non-diabetic patients, which was much higher than the 0% or 8.3% misclassification by 2h PG and FPG or 2h PG and HbA1c, respectively, denoting the importance of OGTT for a more accurate diagnosis. It was previously reported that an increase in 2h PG after 75 g OGTT was observed before an increase in fasting glucose levels in old-aged diabetic patients in Korea [12]. Considering this, although the convenience for diabetic patients is important, OGTT will likely be required in certain cases.
To identify differences in diagnostic values, we used a ROC curve to calculate the optimal cut-off values for each diabetes diagnosis method. The appropriate HbA1c thresholds for FPG ≥126 mg/dL and 2h PG ≥200 mg/dL were 6.2% and 6.1%, respectively, which are both lower than the currently used threshold of 6.5%. These data are in agreement with previous Korean or American data [121922]. Thus, the current HbA1c criteria have high specificity but low sensitivity, leading to approximately one-third of the patients being misclassified. Consequently, individuals with HbA1c levels higher than 6.1% should additionally have the OGTT to more precisely determine their glucose regulation status and receive more appropriate treatments. In the case of FPG, the appropriate thresholds for HbA1c ≥6.5% and 2h PG ≥200 mg/dL were 117 and 115 mg/dL, respectively, which are both ~10 mg/dL lower than the currently used 126 mg/dL. This implies that even if the FPG level is within the IFG range, a further HbA1c check or OGTT is required if the FPG level is on the edge.
Previously, we showed that the appropriate FPG threshold for 2h PG of 200 mg/dL was 110 mg/dL by a previous pooled analysis of Korean epidemiology data [23] and that when the IFG group was further subdivided into stage 1 IFG (FPG 100 to 109 mg/dL) and stage 2 IFG (FPG 110 to 125 mg/dL), stage 2 IFG had a poorer metabolic profile and a higher percentage of people with diabetes by OGTT [18]. Based on this method, we also subdivided the IFG in this study into subgroup 1 (FPG 100 to 109 mg/dL) and subgroup 2 (FPG 110 to 125 mg/dL) and compared them with each other and the normal control group. We found that in subgroup 2, which had a higher FPG level, the prevalence of diabetes was higher (38.5% vs. 13.3%, P=0.004). In addition, although there were no significant differences in insulin resistance parameters, HOMA-B, IGI, and DI, which represent β-cell function, were statistically significantly worse in subgroup 2. This indicated that β-cell function, which is the fundamental basis for the progression of diabetes and plays an important pathophysiologic role in Asians, including Koreans, can be different between individuals depending on their level of FPG despite being in the IFG range [2425]. Consequently, different diagnostic and treatment approaches could be required for subgroups 1 and 2.
By performing a multiple logistic regression analysis in the IFG group for the potential risk factors included in overt DM criteria after having an OGTT, we showed that HbA1c, the Matsuda index, and IGI showed significant correlations. Thus, OGTT can be utilized to measure a patient's insulin resistance status and β-cell function to predict the possibility of further diabetes progression and plan a suitable follow-up schedule and education for each patient.
Several limitations exist for this study. First, the number of study participants was low and data were collected from only one hospital, so the applicability of this study to the general population can be narrow. Therefore, further studies should be undertaken to confirm that it is more accurate to use OGTT in addition to FPG or HbA1c tests when diagnosing diabetes.
Second, it is very likely that an IFG patient will additionally have an OGTT due to the customary scheme of a regular medical checkup. This leads to the possibility of a selection bias where patients in an isolated IGT or overt diabetes group with normal FPG and high 2h PG might not be included. In our study, when diabetes was classified based on OGTT, no patient or only 8.3% of the patients, were misclassified as non-diabetic patients by 2h PG and FPG or 2h PG and HbA1c, respectively. The consequence of this is that it underestimates the percentage of diabetic patients diagnosed with OGTT, so we speculated that it would have little impact on the overall conclusion of this study.
Third, we did not check hemoglobin (Hb) and hematocrit levels in all subjects. While iron deficiency anemia can increase HbA1c levels in subjects with NGT or prediabetes, hemolytic anemia may decrease the HbA1c value [2627]. Thus, the Hb level may affect the diagnosis of diabetes based on the HbA1c level.
In conclusion, the concordance rate of the criteria between each method that is used to diagnose diabetes is low. Therefore, considering the risk of chronic diabetic complications due to delayed detection, performing an additional OGTT during regular check-ups for patients with high FPG or HbA1c (FPG ≥110 mg/dL, HbA1c ≥6.1%) to reclassify their glucose regulation status and further evaluate their potential of progressing to overt diabetes in order to provide a more suitable individualized management is required.

CONFLICTS OF INTEREST: No potential conflict of interest relevant to this article was reported.

  • 1. Task Force Team for Basic Statistical Study of Korean Diabetes Mellitus of Korean Diabetes Association. Park Ie B, Kim J, Kim DJ, Chung CH, Oh JY, Park SW, Lee J, Choi KM, Min KW, Park JH, Son HS, Ahn CW, Kim H, Lee S, Lee IB, Choi I, Baik SH. Diabetes epidemics in Korea: reappraise nationwide survey of diabetes "diabetes in Korea 2007". Diabetes Metab J 2013;37:233-239. ArticlePubMedPMC
  • 2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014;103:137-149. ArticlePubMed
  • 3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-1053. ArticlePubMedPDF
  • 4. Jeon JY, Ko SH, Kwon HS, Kim NH, Kim JH, Kim CS, Song KH, Won JC, Lim S, Choi SH, Jang MJ, Kim Y, Oh K, Kim DJ, Cha BY. Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. Diabetes Metab J 2013;37:349-357. ArticlePubMedPMC
  • 5. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus: present and future perspectives. Nat Rev Endocrinol 2012;8:228-236. ArticlePDF
  • 6. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-1589. ArticlePubMed
  • 7. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008;358:580-591. ArticlePubMed
  • 8. Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, Hamman RF, Ackermann RT, Engelgau MM, Ratner RE. Diabetes Prevention Program Research Group. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med 2005;142:323-332. ArticlePubMedPMC
  • 9. American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015;38(Suppl 1):S8-S16.ArticlePMCPDF
  • 10. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003;26:3160-3167. ArticlePubMedPDF
  • 11. Bartoli E, Fra GP, Carnevale Schianca GP. The oral glucose tolerance test (OGTT) revisited. Eur J Intern Med 2011;22:8-12. ArticlePubMed
  • 12. Lee H, Oh JY, Sung YA, Kim DJ, Kim SH, Kim SG, Moon S, Park Ie B, Rhee EJ, Chung CH, Kim BJ, Ku BJ. Optimal hemoglobin A1C cutoff value for diagnosing type 2 diabetes mellitus in Korean adults. Diabetes Res Clin Pract 2013;99:231-236. ArticlePubMed
  • 13. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-419. ArticlePubMedPDF
  • 14. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462-1470. ArticlePubMedPDF
  • 15. DeFronzo RA, Matsuda M. Reduced time points to calculate the composite index. Diabetes Care 2010;33:e93ArticlePubMedPDF
  • 16. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N, Skyler JS, Marks JB. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract 2000;47:177-184. ArticlePubMed
  • 17. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 2009;32:335-341. ArticlePubMedPMCPDF
  • 18. Oh JY, Lim S, Kim DJ, Kim NH, Kim DJ, Moon SD, Jang HC, Cho YM, Song KH, Ahn CW, Sung YA, Park JY, Shin C, Lee HK, Park KS. Committee of the Korean Diabetes Association on the Diagnosis and Classification of Diabetes Mellitus. A report on the diagnosis of intermediate hyperglycemia in Korea: a pooled analysis of four community-based cohort studies. Diabetes Res Clin Pract 2008;80:463-468. ArticlePubMed
  • 19. Kramer CK, Araneta MR, Barrett-Connor E. A1C and diabetes diagnosis: the Rancho Bernardo Study. Diabetes Care 2010;33:101-103. ArticlePubMedPDF
  • 20. Lu ZX, Walker KZ, O'Dea K, Sikaris KA, Shaw JE. A1C for screening and diagnosis of type 2 diabetes in routine clinical practice. Diabetes Care 2010;33:817-819. ArticlePubMedPMCPDF
  • 21. World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: World Health Organization; 2011.
  • 22. Kim JM, Hong JW, Won JC, Noh JH, Ko KS, Rhee BD, Kim DJ. Glycated hemoglobin value for fasting plasma glucose of 126 mg/dL in Korean: the 2011 Korea National Health and Nutrition Examination Survey. Diabetes Metab J 2014;38:480-483. ArticlePubMedPMC
  • 23. Oh JY, Lim S, Kim DJ, Kim NH, Kim DJ, Moon SD, Jang HC, Cho YM, Song KH, Park KS. Committee of the Korean Diabetes Association on the Diagnosis and Classification of Diabetes Mellitus. The diagnosis of diabetes mellitus in Korea: a pooled analysis of four community-based cohort studies. Diabet Med 2007;24:217-218. ArticlePubMed
  • 24. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son HY. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006;368:1681-1688. ArticlePubMed
  • 25. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011;378:169-181. ArticlePubMed
  • 26. English E, Idris I, Smith G, Dhatariya K, Kilpatrick ES, John WG. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia 2015;58:1409-1421. ArticlePubMedPDF
  • 27. Hong JW, Ku CR, Noh JH, Ko KS, Rhee BD, Kim DJ. Association between the presence of iron deficiency anemia and hemoglobin A1c in Korean adults: the 2011-2012 Korea National Health and Nutrition Examination Survey. Medicine (Baltimore) 2015;94:e825PubMedPMC
Fig. 1

The concordance rate between the three diagnostic criteria of diabetes: fasting plasma glucose (FPG) ≥126 mg/dL; 2-hour plasma glucose (2h PG) after 75 g oral glucose tolerance test ≥200 mg/dL; and glycosylated hemoglobin (HbA1c) ≥6.5%.

dmj-40-118-g001.jpg
Fig. 2

Receiver operating characteristic (ROC) curve of (A, B) glycosylated hemoglobin (HbA1c) and (C,D) fasting plasma glucose (FPG) levels for the diagnosis of diabetes with criteria of FPG ≥126 mg/dL or (E, F) 2-hour plasma glucose (2h PG) after 75 g oral glucose tolerance test ≥200 mg/dL or HbA1c ≥6.5%. AUC, area under the curve.

dmj-40-118-g002.jpg
Table 1

Baseline characteristics and metabolic parameters of the subjects according to glucose tolerance status

dmj-40-118-i001.jpg
Characteristic NGT iIFG iIGT IFG+IGT Overt DM P value
Number (total n=236) 37 51 15 36 97
Male sex, % 35.14 52.00 33.33 60.00 57.58 0.310
FHx, % 29.73 39.58 61.54 53.13 55.10a 0.285
Age, yr 38.70±14.28 54.20±13.64a 49.80±14.56a 54.97±11.17a 54.75±10.76a 0.049
BMI, kg/m2 22.57±3.58 24.49±3.79 24.08±2.34 25.33±3.13a 25.83±3.05a 0.053
AC, cm 76.97±9.91 87.56±9.00a 85.94±6.25 88.48±8.23a 89.85±7.35a 0.383
SBP, mm Hg 118.27±15.29 125.67±15.05 121.73±12.67 122.64±15.46 128.18±15.33a 0.175
DBP, mm Hg 73.51±11.11 73.71±11.10 72.47±6.55 72.91±10.68 77.36±10.03a 0.043
Glc0, mg/dL 91.68±5.78 109.14±6.48a,c,e 92.93±6.06b,d,e 111.78±6.77a,c,d 128.30±17.82a,b,c,d <0.001
Glc30, mg/dL 147.79±25.03 178.30±42.00a,e 168.71±23.52e 191.77±25.43a,e 219.41±36.57a,b,c,d <0.001
Glc120, mg/dL 105.14±19.93 113.78±18.92c,d,e 164.33±11.04a,b,e 173.56±15.82a,b,e 235.20±47.64a,b,c,d <0.001
Ins0, µIU/mL 8.32±2.63 9.04±3.57e 7.61±2.68 10.84±4.82 11.99±7.88a,b 0.011
Ins30, µIU/mL 51.04±29.29 46.65±29.21 43.27±22.92 58.07±49.92e 37.63±31.97d 0.048
Ins120, µIU/mL 36.37±25.64 42.26±32.63d 76.74±40.80 99.37±70.36a,b 68.22±44.04a 0.001
HOMA-IR 1.89±0.63 2.44±1.03e 1.72±0.52e 2.99±1.32 3.87±2.87a,b,c,d <0.001
Matsuda index 7.03±2.70 5.92±2.36d,e 4.81±1.60a 4.02±1.97a,b 3.84±1.54a,b <0.001
GUTT ISI 50.89±9.97 44.74±12.51a,c,d,e 31.10±4.21a,b 27.74±7.17a,b 23.45±5.77a,b <0.001
HOMA-B 108.87±39.81 71.49±27.89a 101.42±58.43e 81.69±38.50a 69.44±42.47a,c 0.023
IGI 1.00±0.99 0.61±0.56a,e 0.47±0.26a 0.60±0.50a 0.31±0.31a,b 0.001
DI 6.26±6.08 2.94±2.92a,e 2.54±0.80a 1.49±0.63a 0.96±0.65a,b <0.001
AUC Glc0–30 197.30±23.05 237.32±37.00a,e 215.62±21.28d,e 250.80±21.91a,b,e 288.46±41.14a,b,c,d <0.001
AUC Ins0–30 890.26±461.85 842.63±472.99 766.37±381.13 1,031.22±755.56 736.81±544.48 0.107
AUCRIns/Glc30 4.58±2.45 3.62±2.00 3.59±1.84 4.04±2.75 2.57±1.72a,d 0.002
AUC Glc0–120 823.11±109.32 960.91±146.96a,d,e 1,039.09±93.79a,b,e 1,150.66±93.16a,b,e 1,422.50±197.59a,b,c,d <0.001
AUC Ins0–120 4,917.71±2,572.32 4,738.65±2,623.26d 7,032.13±2,979.20 7,724.77±4,770.00a,b 5,412.98±3,504.01 0.018
AUCRIns/Glc120 6.10±3.23 5.10±2.73 6.79±2.92 6.50±3.77e 3.92±2.55a,d 0.001
C-peptide, ng/mL 1.65±0.56 1.98±0.59e 1.82±0.42e 2.37±0.92a 2.50±0.88a,b,c 0.001
HbA1c, % 5.53±0.35 5.80±0.41a,e 6.00±0.38a,e 6.05±0.43a,e 6.59±0.58a,b,c,d <0.001
TC, mg/dL 188.43±37.80 204.98±44.97 201.07±47.55 199.63±38.23 202.19±42.25 0.951
TG, mg/dL 82.33±41.30 128.98±88.94 154.71±103.63 172.03±164.49a 153.63±88.13a 0.317
HDL-C, mg/dL 60.13±15.28 56.46±15.82e 50.79±11.85 51.91±12.45 49.92±12.00a,b 0.045
LDL-C, mg/dL 109.75±31.08 126.80±42.89 116.77±33.70 119.78±31.61 128.33±36.35 0.561
hs-CRP, mg/L 0.11±0.15 0.15±0.22 0.10±0.12 0.09±0.09 0.13±0.17 0.445

Values are presented as mean±standard deviation.

NGT, normal glucose tolerance; iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance (FPG <100 mg/dL, 140 mg/dL≤2h PG<200 mg/dL); DM, diabetes mellitus; FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glc0, fasting plasma glucose; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein.

aP<0.05 vs. NGT, bP<0.05 vs. iIFG, cP<0.05 vs. iIGT, dP<0.05 vs. IFG+IGT, eP<0.05 vs. overt DM.

Table 2

Demographic and metabolic characteristics of the subjects with fasting plasma glucose between 100 and 125 mg/dL subdivided into two groups according to glucose level

dmj-40-118-i002.jpg
Characteristic NGT Group 1 (100≤FPG<110) Group 2 (110≤FPG<126) P value
Number 37 45 79
Male sex, n (%) 13 (35.1) 23 (51.1) 45 (57.0) 0.090
FHx, % 29.73 41.5a 53.8b 0.046
Age, yr 38.70±14.28 56.09±14.11a 54.51±10.85b <0.001
BMI, kg/m2 22.57±3.58 24.03±3.44a 25.84±3.09b,c <0.001
AC, cm 76.97±9.91 86.23±9.18a 89.02±7.27b <0.001
SBP, mm Hg 118.27±15.29 125.71±17.20a 124.94±14.09b 0.054
DBP, mm Hg 73.51±11.11 73.11±12.48 75.16±10.18 0.556
FPG Glc0, mg/dL 91.68±5.78 104.38±5.78a 116.3±4.70b,c <0.001
Glc30, mg/dL 147.79±25.03 174.51±42.26a 195.33±28.73b,c <0.001
Glc120, mg/dL 105.14±19.93 151.73±53.02a 179.28±37.29b,c <0.001
Ins0, µIU/mL 8.32±2.63 10.16±2.63a 10.29±4.50b 0.046
Ins30, µIU/mL 51.04±29.29 51.41±29.70 46.47±37.80 0.708
Ins120, µIU/mL 36.37±25.64 67.67±44.76a 69.48±57.39b 0.007
HOMA-IR 1.89±0.63 2.62±1.15a 2.95±1.30b <0.001
Matsuda index 7.03±2.70 5.02±2.46a 4.74±2.21b <0.001
GUTT ISI 50.89±9.98 36.55±14.23a 32.43±13.50b <0.001
HOMA-B 108.87±39.81 88.35±36.48a 69.95±31.11b,c <0.001
IGI 1.00±0.99 0.69±0.49a 0.46±0.48b,c 0.001
DI 6.26±6.08 3.40±2.51a 1.33±1.65b,c <0.001
AUC Glc0–30 197.30±23.05 229.86±35.41a 256.93±25.03b,c <0.001
AUC Ins0–30 890.26±461.85 929.90±483.49 848.69±602.73 0.761
AUCR30 4.58±2.45 4.05±1.92 3.31±2.29 0.021
AUC Glc0–120 823.11±109.32 1021.42±198.68a 1,170.95±199.03b,c <0.001
AUC Ins0–120 4,917.71±2,572.32 6,280.68±3,300.33 5,651.65±3,713.21 0.325
AUCRIns/Glc 6.10±3.23 6.10±2.67 4.86±3.09 0.117
C-peptide, ng/mL 1.65±0.56 2.11±0.71a 2.35±0.90b <0.001
HbA1c, % 5.53±0.35 5.88±0.47a 6.14±0.43b,c <0.001
TC, mg/dL 188.43±37.80 206.55±41.35 203.67±44.86b 0.119
TG, mg/dL 82.33±41.30 159.66±151.30a 147.03±86.42b 0.002
HDL-C, mg/dL 60.13±15.28 54.96±13.51 52.21±14.22b 0.025
LDL-C, mg/dL 109.75±31.08 126.53±39.05a 128.77±39.52b 0.075
hs-CRP, mg/L 0.11±0.15 0.10±0.10 0.13±0.16 0.671
AST, IU/L 20.38±5.61 26.86±10.13a 27.64±9.34b <0.001
ALT, IU/L 20.12±13.72 30.59±20.34a 29.84±20.16b 0.029
Overt DM, % - 13.3 38.5c 0.004

Values are presented as mean±standard deviation.

NGT, normal glucose tolerance; FPG, fasting plasma glucose; FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; DM, diabetes mellitus.

aP<0.05 NGT vs. group 1, bP<0.05 NGT vs. group 2, cP<0.05 group 1 vs. group 2.

Table 3

Comparison of risk factors between prediabetes and overt diabetes in a subgroup whose fasting glucose was 100 to 125 mg/dL

dmj-40-118-i003.jpg
Characteristic Group 1
(prediabetes)
Group 2
(overt diabetes)
P value
Number 87 36
Male sex, % 54.0 55.6 1.00
FHx, % 45.1 58.3 0.231
Age, yr 54.52±12.56 57.111±10.27 0.375
BMI, kg/m2 24.85±3.53 25.77±2.31 0.092
AC, cm 87.92±8.66 88.65±6.21 0.495
SBP, mm Hg 124.41±15.23 1,216.97±15.47 0.546
DBP, mm Hg 73.38±10.82 76.61±11.44 0.236
Glc0, mg/dL 110.23±6.70 116.17±6.23 0.000
Glc30, mg/dL 183.65±36.74 200.15±28.51 0.026
Glc120, mg/dL 138.51±34.45 243.36±31.65 0.000
Ins0, µIU/mL 9.79±4.20 11.05±4.67 0.121
Ins30, µIU/mL 51.19±37.90 37.57±21.81 0.120
Ins120, µIU/mL 63.37±55.92 81.59±45.17 0.028
HOMA-IR 2.67±1.18 3.16±1.31 0.022
Matsuda index 5.24±2.39 3.89±1.70 0.012
GUTT ISI 38.64±13.60 22.59±4.79 0.007
HOMA-B 75.76±32.93 76.60±36.22 0.987
IGI 0.61±0.53 0.34±0.30 0.007
DI 2.42±2.46 1.00±0.57 0.000
AUC Glc0–30 242.68±32.38 260.79±26.18 0.010
AUC Ins0–30 918.56±605.37 721.88±368.18 0.176
AUCR30 4.05±1.92 3.31±2.29 0.047
AUC Glc0–120 1,036.33±158.17 1,363.18±138.63 0.000
AUC Ins0–120 5,772.31±3,754.30 6,035.24±3,208.23 0.476
AUCRIns/Glc 5.58±3.16 4.51±2.52 0.194
C-peptide, ng/mL 2.14±0.76 2.53±0.95 0.028
HbA1c, % 5.90±0.43 6.40±0.40 0.000
TC, mg/dL 202.78±42.17 208.75±47.23 0.555
TG, mg/dL 146.71±126.05 162.77±79.45 0.048
HDL-C, mg/dL 54.59±14.63 49.94±12.02 0.124
LDL-C, mg/dL 123.93±38.59 136.91±40.15 0.144
hs-CRP, mg/L 0.12±0.18 0.12±0.12 0.199

Values are presented as mean±standard deviation.

FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG Glc0, fasting plasma glucose; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein.

Table 4

Logistic regression of risk factors associated with overt diabetes mellitus in the subgroup whose fasting pasma glucose was 100 to 125 mg/dL

dmj-40-118-i004.jpg
Characteristic Univariate Multivariate
Odds ratio (CI) P value Odds ratio (CI) P value
BMI, kg/m2 1.093 (0.97–1.24) 0.157 - -
FPG, mg/dL 1.14 (1.07–1.22) <0.001 - -
HbA1c, % 22.75 (6.12–84.59) <0.001 19.57 (2.40–159.41) 0.005
C-peptide, ng/mL 1.70 (1.06–2.72) 0.027 - -
TG, mg/dL 1.00 (0.99–1.01) 0.490 - -
Matsuda index 0.73 (0.55–0.96) 0.022 0.60 (0.39–0.93) 0.022
IGI 0.254 (0.008–0.82) 0.022 0.054 (0.003–0.912) 0.043

BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin; TG, triglyceride; IGI, insulinogenic index.

Figure & Data

References

    Citations

    Citations to this article as recorded by  
    • The effect of preprandial versus postprandial physical activity on glycaemia: Meta-analysis of human intervention studies
      Romy Slebe, Eva Wenker, Linda J. Schoonmade, Emma J. Bouman, Denis P. Blondin, David J.T. Campbell, André C. Carpentier, Joris Hoeks, Parminder Raina, Patrick Schrauwen, Mireille J. Serlie, Dirk Jan Stenvers, Renée de Mutsert, Joline W.J. Beulens, Femke R
      Diabetes Research and Clinical Practice.2024; 210: 111638.     CrossRef
    • Dysglycaemia prediction using readily available clinical, anthropometric, and biochemical measurements
      R. Guizar-Heredia, M. Guevara-Cruz, M. Aguilar-López, L.E. González-Salazar, I. Medina-Vera, L. Arteaga-Sánchez, E. Pichardo-Ontiveros, A.E. Serralde-Zúñiga, A. Diaz-Villaseñor, A. Ávila-Nava, N. Torres, A.R. Tovar
      Clinical Nutrition Open Science.2024; 55: 91.     CrossRef
    • Assessing blood sugar measures for predicting new-onset diabetes and cardiovascular disease in community-dwelling adults
      Jung-Hwan Kim, Yaeji Lee, Chung-Mo Nam, Yu-Jin Kwon, Ji-Won Lee
      Endocrine.2024;[Epub]     CrossRef
    • 2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
      Jun Sung Moon, Shinae Kang, Jong Han Choi, Kyung Ae Lee, Joon Ho Moon, Suk Chon, Dae Jung Kim, Hyun Jin Kim, Ji A Seo, Mee Kyoung Kim, Jeong Hyun Lim, Yoon Ju Song, Ye Seul Yang, Jae Hyeon Kim, You-Bin Lee, Junghyun Noh, Kyu Yeon Hur, Jong Suk Park, Sang
      Diabetes & Metabolism Journal.2024; 48(4): 546.     CrossRef
    • Dichotomy in the Impact of Elevated Maternal Glucose Levels on Neonatal Epigenome
      Ives Yubin Lim, Xinyi Lin, Ai Ling Teh, Yonghui Wu, Li Chen, Menglan He, Shiao-Yng Chan, Julia L MacIsaac, Jerry K Y Chan, Kok Hian Tan, Mary Foong Fong Chong, Michael S Kobor, Keith M Godfrey, Michael J Meaney, Yung Seng Lee, Johan G Eriksson, Peter D Gl
      The Journal of Clinical Endocrinology & Metabolism.2022; 107(3): e1277.     CrossRef
    • Imaging evaluation of the pancreas in diabetic patients
      Ni Zeng, Yi Wang, Yue Cheng, Zixing Huang, Bin Song
      Abdominal Radiology.2022; 47(2): 715.     CrossRef
    • The Impact of Financial Incentives on Behavior and Self-Management of Uncontrolled Type 2 Diabetes: Pre- and Post-Quasiexperimental Study
      Dalal Abdulaziz Al Kathiry, Fatima Al Slail, Khaled Al-Surimi, Raghib Abusaris
      Global Journal on Quality and Safety in Healthcare.2021; 4(3): 88.     CrossRef
    • Practice Patterns in the Acceptance of Medically Complex Living Kidney Donors with Obesity, Hypertension, Family History of Kidney Disease, or Donor-Recipient Age Discrepancy
      Ziad Arabi, Muhammad Bukhari, Abdullah Hamad, Abdulrahman Altheaby, Saleh Kaysi
      Avicenna Journal of Medicine.2021; 11(04): 172.     CrossRef
    • Secretagogin is Related to Insulin Secretion but Unrelated to Gestational Diabetes Mellitus Status in Pregnancy
      Carola Deischinger, Jürgen Harreiter, Karoline Leitner, Dagmar Bancher-Todesca, Sabina Baumgartner-Parzer, Alexandra Kautzky-Willer
      Journal of Clinical Medicine.2020; 9(7): 2277.     CrossRef
    • Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin
      Chia-Yun Hsu, Gong-Min Lin, Shang-Tzen Chang
      Journal of Traditional and Complementary Medicine.2020; 10(4): 389.     CrossRef
    • Optimal fasting plasma glucose and haemoglobin A1c levels for screening of prediabetes and diabetes according to 2‐hour plasma glucose in a high‐risk population: The Korean Diabetes Prevention Study
      Seon‐Ah Cha, Suk Chon, Jae‐Seung Yun, Sang Youl Rhee, Sun‐Young Lim, Kun‐Ho Yoon, Yu‐Bae Ahn, Seung‐Hyun Ko, Jeong‐Taek Woo, Jin‐Hee Lee
      Diabetes/Metabolism Research and Reviews.2020;[Epub]     CrossRef
    • Prediction of type 2 diabetes mellitus using fasting plasma glucose and HbA1c levels among individuals with impaired fasting plasma glucose: a cross-sectional study in Thailand
      Tullaya Sitasuwan, Raweewan Lertwattanarak
      BMJ Open.2020; 10(11): e041269.     CrossRef
    • The effect of oral glucose tolerance testing on changes in arterial stiffness and blood pressure in elderly women with hypertension and relationships between the stage of diabetes and physical fitness levels
      Jaesong Lee, Wonil Park, Eunsook Sung, Bokbeom Kim, Nahyun Kim, Saejong Park, Chulho Shin, Jonghoon Park
      Physical Activity and Nutrition.2020; 24(4): 34.     CrossRef
    • From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research
      Radia Khan, Zoey Chua, Jia Tan, Yingying Yang, Zehuan Liao, Yan Zhao
      Medicina.2019; 55(9): 546.     CrossRef
    • Molecular imaging of β-cells: diabetes and beyond
      Weijun Wei, Emily B. Ehlerding, Xiaoli Lan, Quan-Yong Luo, Weibo Cai
      Advanced Drug Delivery Reviews.2019; 139: 16.     CrossRef
    • Validity of the FINDRISC as a prediction tool for diabetes in a contemporary Norwegian population: a 10-year follow-up of the HUNT study
      Anne Jølle, Kristian Midthjell, Jostein Holmen, Sven Magnus Carlsen, Jaakko Tuomilehto, Johan Håkon Bjørngaard, Bjørn Olav Åsvold
      BMJ Open Diabetes Research & Care.2019; 7(1): e000769.     CrossRef
    • HbA1c Cutoff for Prediabetes and Diabetes Based on Oral Glucose Tolerance Test in Obese Children and Adolescents
      Hyo-Kyoung Nam, Won Kyoung Cho, Jae Hyun Kim, Young-Jun Rhie, Sochung Chung, Kee-Hyoung Lee, Byung-Kyu Suh
      Journal of Korean Medical Science.2018;[Epub]     CrossRef
    • Detection of glucose metabolism disorders in coronary patients enrolled in cardiac rehabilitation: Is glycated haemoglobin useful? Data from the prospective REHABDIAB study
      Sopio Tatulashvili, Bénédicte Patois-Vergès, Amandine Nguyen, Marie-Cécile Blonde, Bruno Vergès
      European Journal of Preventive Cardiology.2018; 25(5): 464.     CrossRef
    • Imaging in pancreatic disease
      Julien Dimastromatteo, Teresa Brentnall, Kimberly A. Kelly
      Nature Reviews Gastroenterology & Hepatology.2017; 14(2): 97.     CrossRef

    • PubReader PubReader
    • Cite this Article
      Cite this Article
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus?
      Diabetes Metab J. 2016;40(2):118-128.   Published online November 20, 2015
      Close
    • XML DownloadXML Download
    Figure
    • 0
    • 1
    Related articles
    Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus?
    Image Image
    Fig. 1 The concordance rate between the three diagnostic criteria of diabetes: fasting plasma glucose (FPG) ≥126 mg/dL; 2-hour plasma glucose (2h PG) after 75 g oral glucose tolerance test ≥200 mg/dL; and glycosylated hemoglobin (HbA1c) ≥6.5%.
    Fig. 2 Receiver operating characteristic (ROC) curve of (A, B) glycosylated hemoglobin (HbA1c) and (C,D) fasting plasma glucose (FPG) levels for the diagnosis of diabetes with criteria of FPG ≥126 mg/dL or (E, F) 2-hour plasma glucose (2h PG) after 75 g oral glucose tolerance test ≥200 mg/dL or HbA1c ≥6.5%. AUC, area under the curve.
    Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus?
    CharacteristicNGTiIFGiIGTIFG+IGTOvert DMP value
    Number (total n=236)3751153697
    Male sex, %35.1452.0033.3360.0057.580.310
    FHx, %29.7339.5861.5453.1355.10a0.285
    Age, yr38.70±14.2854.20±13.64a49.80±14.56a54.97±11.17a54.75±10.76a0.049
    BMI, kg/m222.57±3.5824.49±3.7924.08±2.3425.33±3.13a25.83±3.05a0.053
    AC, cm76.97±9.9187.56±9.00a85.94±6.2588.48±8.23a89.85±7.35a0.383
    SBP, mm Hg118.27±15.29125.67±15.05121.73±12.67122.64±15.46128.18±15.33a0.175
    DBP, mm Hg73.51±11.1173.71±11.1072.47±6.5572.91±10.6877.36±10.03a0.043
    Glc0, mg/dL91.68±5.78109.14±6.48a,c,e92.93±6.06b,d,e111.78±6.77a,c,d128.30±17.82a,b,c,d<0.001
    Glc30, mg/dL147.79±25.03178.30±42.00a,e168.71±23.52e191.77±25.43a,e219.41±36.57a,b,c,d<0.001
    Glc120, mg/dL105.14±19.93113.78±18.92c,d,e164.33±11.04a,b,e173.56±15.82a,b,e235.20±47.64a,b,c,d<0.001
    Ins0, µIU/mL8.32±2.639.04±3.57e7.61±2.6810.84±4.8211.99±7.88a,b0.011
    Ins30, µIU/mL51.04±29.2946.65±29.2143.27±22.9258.07±49.92e37.63±31.97d0.048
    Ins120, µIU/mL36.37±25.6442.26±32.63d76.74±40.8099.37±70.36a,b68.22±44.04a0.001
    HOMA-IR1.89±0.632.44±1.03e1.72±0.52e2.99±1.323.87±2.87a,b,c,d<0.001
    Matsuda index7.03±2.705.92±2.36d,e4.81±1.60a4.02±1.97a,b3.84±1.54a,b<0.001
    GUTT ISI50.89±9.9744.74±12.51a,c,d,e31.10±4.21a,b27.74±7.17a,b23.45±5.77a,b<0.001
    HOMA-B108.87±39.8171.49±27.89a101.42±58.43e81.69±38.50a69.44±42.47a,c0.023
    IGI1.00±0.990.61±0.56a,e0.47±0.26a0.60±0.50a0.31±0.31a,b0.001
    DI6.26±6.082.94±2.92a,e2.54±0.80a1.49±0.63a0.96±0.65a,b<0.001
    AUC Glc0–30197.30±23.05237.32±37.00a,e215.62±21.28d,e250.80±21.91a,b,e288.46±41.14a,b,c,d<0.001
    AUC Ins0–30890.26±461.85842.63±472.99766.37±381.131,031.22±755.56736.81±544.480.107
    AUCRIns/Glc304.58±2.453.62±2.003.59±1.844.04±2.752.57±1.72a,d0.002
    AUC Glc0–120823.11±109.32960.91±146.96a,d,e1,039.09±93.79a,b,e1,150.66±93.16a,b,e1,422.50±197.59a,b,c,d<0.001
    AUC Ins0–1204,917.71±2,572.324,738.65±2,623.26d7,032.13±2,979.207,724.77±4,770.00a,b5,412.98±3,504.010.018
    AUCRIns/Glc1206.10±3.235.10±2.736.79±2.926.50±3.77e3.92±2.55a,d0.001
    C-peptide, ng/mL1.65±0.561.98±0.59e1.82±0.42e2.37±0.92a2.50±0.88a,b,c0.001
    HbA1c, %5.53±0.355.80±0.41a,e6.00±0.38a,e6.05±0.43a,e6.59±0.58a,b,c,d<0.001
    TC, mg/dL188.43±37.80204.98±44.97201.07±47.55199.63±38.23202.19±42.250.951
    TG, mg/dL82.33±41.30128.98±88.94154.71±103.63172.03±164.49a153.63±88.13a0.317
    HDL-C, mg/dL60.13±15.2856.46±15.82e50.79±11.8551.91±12.4549.92±12.00a,b0.045
    LDL-C, mg/dL109.75±31.08126.80±42.89116.77±33.70119.78±31.61128.33±36.350.561
    hs-CRP, mg/L0.11±0.150.15±0.220.10±0.120.09±0.090.13±0.170.445
    CharacteristicNGTGroup 1 (100≤FPG<110)Group 2 (110≤FPG<126)P value
    Number374579
    Male sex, n (%)13 (35.1)23 (51.1)45 (57.0)0.090
    FHx, %29.7341.5a53.8b0.046
    Age, yr38.70±14.2856.09±14.11a54.51±10.85b<0.001
    BMI, kg/m222.57±3.5824.03±3.44a25.84±3.09b,c<0.001
    AC, cm76.97±9.9186.23±9.18a89.02±7.27b<0.001
    SBP, mm Hg118.27±15.29125.71±17.20a124.94±14.09b0.054
    DBP, mm Hg73.51±11.1173.11±12.4875.16±10.180.556
    FPG Glc0, mg/dL91.68±5.78104.38±5.78a116.3±4.70b,c<0.001
    Glc30, mg/dL147.79±25.03174.51±42.26a195.33±28.73b,c<0.001
    Glc120, mg/dL105.14±19.93151.73±53.02a179.28±37.29b,c<0.001
    Ins0, µIU/mL8.32±2.6310.16±2.63a10.29±4.50b0.046
    Ins30, µIU/mL51.04±29.2951.41±29.7046.47±37.800.708
    Ins120, µIU/mL36.37±25.6467.67±44.76a69.48±57.39b0.007
    HOMA-IR1.89±0.632.62±1.15a2.95±1.30b<0.001
    Matsuda index7.03±2.705.02±2.46a4.74±2.21b<0.001
    GUTT ISI50.89±9.9836.55±14.23a32.43±13.50b<0.001
    HOMA-B108.87±39.8188.35±36.48a69.95±31.11b,c<0.001
    IGI1.00±0.990.69±0.49a0.46±0.48b,c0.001
    DI6.26±6.083.40±2.51a1.33±1.65b,c<0.001
    AUC Glc0–30197.30±23.05229.86±35.41a256.93±25.03b,c<0.001
    AUC Ins0–30890.26±461.85929.90±483.49848.69±602.730.761
    AUCR304.58±2.454.05±1.923.31±2.290.021
    AUC Glc0–120823.11±109.321021.42±198.68a1,170.95±199.03b,c<0.001
    AUC Ins0–1204,917.71±2,572.326,280.68±3,300.335,651.65±3,713.210.325
    AUCRIns/Glc6.10±3.236.10±2.674.86±3.090.117
    C-peptide, ng/mL1.65±0.562.11±0.71a2.35±0.90b<0.001
    HbA1c, %5.53±0.355.88±0.47a6.14±0.43b,c<0.001
    TC, mg/dL188.43±37.80206.55±41.35203.67±44.86b0.119
    TG, mg/dL82.33±41.30159.66±151.30a147.03±86.42b0.002
    HDL-C, mg/dL60.13±15.2854.96±13.5152.21±14.22b0.025
    LDL-C, mg/dL109.75±31.08126.53±39.05a128.77±39.52b0.075
    hs-CRP, mg/L0.11±0.150.10±0.100.13±0.160.671
    AST, IU/L20.38±5.6126.86±10.13a27.64±9.34b<0.001
    ALT, IU/L20.12±13.7230.59±20.34a29.84±20.16b0.029
    Overt DM, %-13.338.5c0.004
    CharacteristicGroup 1
    (prediabetes)
    Group 2
    (overt diabetes)
    P value
    Number8736
    Male sex, %54.055.61.00
    FHx, %45.158.30.231
    Age, yr54.52±12.5657.111±10.270.375
    BMI, kg/m224.85±3.5325.77±2.310.092
    AC, cm87.92±8.6688.65±6.210.495
    SBP, mm Hg124.41±15.231,216.97±15.470.546
    DBP, mm Hg73.38±10.8276.61±11.440.236
    Glc0, mg/dL110.23±6.70116.17±6.230.000
    Glc30, mg/dL183.65±36.74200.15±28.510.026
    Glc120, mg/dL138.51±34.45243.36±31.650.000
    Ins0, µIU/mL9.79±4.2011.05±4.670.121
    Ins30, µIU/mL51.19±37.9037.57±21.810.120
    Ins120, µIU/mL63.37±55.9281.59±45.170.028
    HOMA-IR2.67±1.183.16±1.310.022
    Matsuda index5.24±2.393.89±1.700.012
    GUTT ISI38.64±13.6022.59±4.790.007
    HOMA-B75.76±32.9376.60±36.220.987
    IGI0.61±0.530.34±0.300.007
    DI2.42±2.461.00±0.570.000
    AUC Glc0–30242.68±32.38260.79±26.180.010
    AUC Ins0–30918.56±605.37721.88±368.180.176
    AUCR304.05±1.923.31±2.290.047
    AUC Glc0–1201,036.33±158.171,363.18±138.630.000
    AUC Ins0–1205,772.31±3,754.306,035.24±3,208.230.476
    AUCRIns/Glc5.58±3.164.51±2.520.194
    C-peptide, ng/mL2.14±0.762.53±0.950.028
    HbA1c, %5.90±0.436.40±0.400.000
    TC, mg/dL202.78±42.17208.75±47.230.555
    TG, mg/dL146.71±126.05162.77±79.450.048
    HDL-C, mg/dL54.59±14.6349.94±12.020.124
    LDL-C, mg/dL123.93±38.59136.91±40.150.144
    hs-CRP, mg/L0.12±0.180.12±0.120.199
    CharacteristicUnivariateMultivariate
    Odds ratio (CI)P valueOdds ratio (CI)P value
    BMI, kg/m21.093 (0.97–1.24)0.157--
    FPG, mg/dL1.14 (1.07–1.22)<0.001--
    HbA1c, %22.75 (6.12–84.59)<0.00119.57 (2.40–159.41)0.005
    C-peptide, ng/mL1.70 (1.06–2.72)0.027--
    TG, mg/dL1.00 (0.99–1.01)0.490--
    Matsuda index0.73 (0.55–0.96)0.0220.60 (0.39–0.93)0.022
    IGI0.254 (0.008–0.82)0.0220.054 (0.003–0.912)0.043
    Table 1 Baseline characteristics and metabolic parameters of the subjects according to glucose tolerance status

    Values are presented as mean±standard deviation.

    NGT, normal glucose tolerance; iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance (FPG <100 mg/dL, 140 mg/dL≤2h PG<200 mg/dL); DM, diabetes mellitus; FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glc0, fasting plasma glucose; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein.

    aP<0.05 vs. NGT, bP<0.05 vs. iIFG, cP<0.05 vs. iIGT, dP<0.05 vs. IFG+IGT, eP<0.05 vs. overt DM.

    Table 2 Demographic and metabolic characteristics of the subjects with fasting plasma glucose between 100 and 125 mg/dL subdivided into two groups according to glucose level

    Values are presented as mean±standard deviation.

    NGT, normal glucose tolerance; FPG, fasting plasma glucose; FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; DM, diabetes mellitus.

    aP<0.05 NGT vs. group 1, bP<0.05 NGT vs. group 2, cP<0.05 group 1 vs. group 2.

    Table 3 Comparison of risk factors between prediabetes and overt diabetes in a subgroup whose fasting glucose was 100 to 125 mg/dL

    Values are presented as mean±standard deviation.

    FHx, family history of diabetes; BMI, body mass index; AC, abdominal circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG Glc0, fasting plasma glucose; Glc30, plasma glucose 30 minutes after glucose intake; Glc120, plasma glucose 120 minutes after glucose intake; Ins0, fasting plasma insulin; Ins30, plasma insulin 30 minutes after glucose intake; Ins120, plasma insulin 120 minutes after glucose intake; HOMA-IR, homeostasis model assessment of insulin resistance; Gutt ISI, Gutt insulin sensitivity index; HOMA-B, homeostasis model assessment of pancreatic β-cell function; IGI, insulinogenic index; DI, oral disposition index; AUC Glc, area under the curve for glucose; AUC Ins, area under the curve for insulin; AUCRIns/Glc, a ratio of the AUC Ins/AUC Glc; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein.

    Table 4 Logistic regression of risk factors associated with overt diabetes mellitus in the subgroup whose fasting pasma glucose was 100 to 125 mg/dL

    BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin; TG, triglyceride; IGI, insulinogenic index.

    Kim DL, Kim SD, Kim SK, Park S, Song KH. Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus?. Diabetes Metab J. 2016;40(2):118-128.
    Received: May 12, 2015; Accepted: Aug 13, 2015
    DOI: https://doi.org/10.4093/dmj.2016.40.2.118.

    Diabetes Metab J : Diabetes & Metabolism Journal
    Close layer
    TOP