Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Articles

Page Path
HOME > Diabetes Metab J > Volume 39(3); 2015 > Article
Sulwon Lecture 2014
Pathophysiology Gut Microbiota and Metabolic Disorders
Kyu Yeon Hur1, Myung-Shik Lee2
Diabetes & Metabolism Journal 2015;39(3):198-203.
DOI: https://doi.org/10.4093/dmj.2015.39.3.198
Published online: June 15, 2015
  • 11,162 Views
  • 240 Download
  • 165 Web of Science
  • 168 Crossref
  • 189 Scopus

1Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

2Severance Biomedical Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.

corresp_icon Corresponding author: Myung-Shik Lee. Severance Biomedical Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea. mslee0923@yuhs.ac

Copyright © 2015 Korean Diabetes Association

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

prev next
  • Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.
The Sulwon Award for Scientific Achievement is the Korean Diabetes Association's highest scientific award and honors an individual who has excellently contributed to the progress in the field of diabetes and metabolism. Sulwon Award is named after an emeritus professor Eung Jin Kim, who founded Korean Diabetes Association. Prof. Myung-Shik Lee received the fifth Sulwon Award at 2014 International Conference on Diabetes and Metabolism, October 16-18, 2014 at Gyeonggido, Korea.
The adult gut microbiota comprises 10 to 100 trillion microorganisms, which is equivalent to ten times the number of our total somatic and germ cells [1]. Further, the collective genomes of gut microbiota (microbiome) contain 100- to 150-fold more genes than our own genome [2]. The gut microbiota has coevolved with humans and has shown profound effects on various host responses. Recent findings have suggested that an altered gut microbial composition is associated with metabolic diseases, including obesity, diabetes, or non-alcoholic fatty liver disease. These findings have indicated that the gut microbiota should be considered as an important factor to modulate host metabolism and metabolic disorders.
The gut microbiota plays an important role in the regulation of the host's metabolism and the extraction of energy from ingested food. Gut microbiota have not only the beneficial functions for the host but also the pathophysiological interactions with the host, particularly in the case of obesity and related metabolic disorders. Recent studies have shown that changes in the gut microbiota may be related in the pathogenesis of obesity and diabetes. For example, germ-free mice are protected from high fat diet (HFD)-induced obesity and metabolic dysfunction, including glucose intolerance, which is due to derepression of fasting-induced adipose factor (Fiaf), an inhibitor of lipoprotein lipase (LPL) [134]. Additionally, the colonization of germ-free animals with gut microbiota isolated from conventionally raised obese donors led to a significant increase in body fat content and insulin resistance in recipient mice [56]. Most bacterial species in the mouse and human gut belong to the phyla Bacteroidetes and Firmicutes. Compared with their lean counterparts, leptin-deficient ob/ob mice showed a decrease in Bacteroidetes and a corresponding increase in Firmicutes [7]. Interestingly, studies with humans also have shown that gut microbiota composition differs between obese and lean subjects [57]. Recently, two large metagenome-wide association studies reported that subjects with type 2 diabetes mellitus (T2DM) had a lower proportion of butyrate-producing Clostridiales (Roseburia and Faecalibacterium prausnitzii) and greater proportions of Clostridiales that do not produce butyrate, suggesting a protective role of butyrate-producing bacteria against T2DM [89].
Currently, it is not known whether these changes in the intestinal microbiota composition are secondary to the altered gastrointestinal motility and small intestinal bacterial overgrowth that are often seen in T2DM. Nevertheless, selected intestinal bacterial strains may function in the clinic as early diagnostic markers to better identify obese subjects who might be prone to develop T2DM, and provide a novel therapeutic modality against obesity or T2DM.
Short-chain fatty acids
An essential role of gut microbiota is the fermentation of dietary polysaccharides that the host cannot otherwise digest. Dietary fibers constitute the indigestible portion of plant foods containing insoluble and soluble fibers. These soluble fibers are digested by enzymes derived from the gut microbiota into short-chain fatty acids (SCFAs). SCFAs (butyrate, acetate, and propionate) are absorbed in the intestines and used as energy by the host. In addition to their role as energy substrates, SCFAs function as regulators of food or energy intake [10] and inflammation [11]. It is well known that SCFAs are associated with increased satiety and reduced food intake [10]. SCFAs bind to G protein-coupled receptors, (GPCRs) such as GPR41 and GPR43, which are expressed in the enteroendocrine cells [12]. This action leads to the secretion of certain peptide hormones, such as peptide YY (PYY), that are released basolaterally into the systemic circulation, enabling a form of communication between the gut milieu and the host. Reduced food intake is, in part, due to the increases in the gut hormones, such as glucagon-like peptide (GLP)-1 and PYY [13] which decrease appetite and energy intake, and due to the decreased release of the gut peptide ghrelin, which increases food intake through effects on the hypothalamic and brainstem reward-related circuits (Fig. 1) [14]. SCFAs-mediated activation of GPR43 resulted in suppression of insulin signaling in the adipose tissue subsequently preventing fat accumulation [15]. Recent study reported that dietary soluble fibers exert their antiobesity and antidiabetic effects via the induction of intestinal gluconeogenesis (IGN), which is contrary to the general idea that gluconeogenesis impairs glucose tolerance [16]. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit [16]. Glucose released by IGN is detected by a portal vein glucose sensor that signals to the brain through the peripheral nervous system, thus exerting beneficial effects on food intake and improving glucose tolerance (Fig. 1)[1617].
Gut permeability and metabolic endotoxemia
Several recent studies have suggested that disruption of the gut barrier function and the gut microbiota-derived endotoxemia could contribute to the pathogenesis of obesity and T2DM [1819]. A HFD dramatically increased gut permeability and reduced the expression of tight junction protein, such as zonula occludens-1 and occludin, in the intestinal epithelial cells of mice (Fig. 2) [20]. Disruption of the gut barrier in genetically or HFD-induced obese mice increased gut permeability, resulting in the leakage of lipopolysaccharide into the portal blood circulation (Fig. 2) [212223]. Consistent with this concept, the modulation of the gut microbiota composition with antibiotics or prebiotics improved gut permeability, reduced metabolic endotoxemia, lowered inflammation, and alleviated glucose intolerance [24].
Prebiotics
Prebiotics are non-digestible but fermentable polysaccharides, such as inulin, fructo-, oligosaccharides, galato-oligosaccharides, or lactulose. Foods artificially enriched with these fibers are defined as prebiotics, which promote SCFA production and the growth of beneficial bacteria, especially Bifidobacterium and Lactobacillus [25]. Studies in healthy humans and rodents have demonstrated that prebiotic consumption reduces hunger and enhances satiety [26]. As discussed above, this modulation of ingestive behavior is mediated, in part, by SCFA-induced changes in gut peptide secretion. Additionally, by promoting Bifidobacterium populations, prebiotics improve gut barrier function [27].
Probiotics
Probiotics are defined as live microorganisms that confer a beneficial health effect on the host when administered in proper amounts. Some probiotic strains, especially those of the genera Lactobacillus and Bifidobacterium, have been shown to ameliorate obesity and metabolic disorders. The suggested mechanisms include inhibition of the pathogen adhesion to gut mucosa, stabilization of the microbial community, or improvement of the mucosal integrity and barrier function [2728293031]. The improvements of gut barrier function may reflect the actions of the SCFA products of bacterial fermentation. A recent study reported the direct beneficial actions of Lactobacilli on the epithelial cells and on the enteric nervous system regulating gut contractility [32].
Drugs
A recent study showed that metformin, widely used for treatment of T2DM, is able to slow aging in Caenorhabditis elegans by metabolically altering Escherichia coli with which it is cocultured [33]. This effect was found to be due to the alteration of folate and the methionine metabolism of E. coli by metformin. Metformin decreased the methionine cycle and increased the levels of both S-adenosylmethionine (SAMe) and S-adenosylhomocystein. SAMe acts a co-repressor of methionine synthesis genes and also inhibits the folate cycle, resulting in decelerated aging in the worm [33].
Metformin can also affect the intestinal microbiota of mammals. We have demonstrated that metformin is able to affect the mouse microbiota and increase the abundance of Akkermansia muciniphila, a mucin-degrading G (-) anaerobes, in the gut of experimental mice fed a HFD (Fig. 2) [34]. We also observed that the administration of A. muciniphila had similar beneficial metabolic effects to that of metformin administration: (1) increased the number of mucin-producing goblet cells was similarly found after the administration of metformin or A. muciniphila; (2) diminished regulatory T (Treg) cell numbers and elevated interleukin 1β (IL-1β) or IL-6 mRNA expression in the visceral adipose tissue of mice fed a HFD were similarly reversed after the administration of metformin or A. muciniphila. Mucin has recently been shown to enhance delivery of tolerogenic immunoregulatory signal to the intestinal epithelium by forming galectin-3-dectin-1-FcγRIIB complex besides its classical role as a physical barrier [35] This study therefore underscores that drugs, such as metformin, might exert therapeutic effects, at least in part by modulating the gut micriobiota.
Fecal microbiota transplantation
Recently, articles in the literature regarding fecal microbiota transplantation (FMT) have aroused strong interest. FMT is reported to be a highly successful therapy for recurrent Clostridium difficile infection [36]. These results also suggested a potential therapeutic effect of FMT in metabolic syndrome or T2DM. A recent study showed that FMT via a gastroduodenal tube from lean donors into obese subjects with metabolic syndrome induced a significant improvement of insulin sensitivity in the recipients [37]. FMT resulted in an increase of the microbial diversity and a 2.5-fold increase in the proportion of butyrate producer Roseburia intestinalis after 6 weeks of treatment, whereas, fecal SCFA levels were decreased. Despite this first evidence that such as approach could be attractive, more information is needed with larger, well-designed studies to prove whether such approaches are overall beneficial for patients with metabolic syndrome or T2DM.
Intestinal microbiota may play an important role in the pathogenesis of T2DM by influencing body weight, proinflammatory activity, and insulin resistance (Fig. 1). Future studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM and to enable the development of innovative and effective treatments for T2DM.
Acknowledgements
This study was supported by a Global Research Laboratory Grant (K21004000003-12A0500-00310) from the National Research Foundation of Korea and the Ulsan National Institute of Science and Technology Research Fund (2014M3A9D8034459).

CONFLICTS OF INTEREST: No potential conflict of interest relevant to this article was reported.

  • 1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915-1920. ArticlePubMed
  • 2. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. ArticlePubMedPMCPDF
  • 3. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004;101:15718-15723. ArticlePubMedPMC
  • 4. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007;104:979-984. ArticlePubMedPMC
  • 5. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031. ArticlePubMedPDF
  • 6. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3:213-223. ArticlePubMedPMC
  • 7. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-11075. ArticlePubMedPMC
  • 8. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99-103. ArticlePubMedPDF
  • 9. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60. ArticlePubMedPDF
  • 10. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006;55:1484-1490. ArticlePubMedPDF
  • 11. Conterno L, Fava F, Viola R, Tuohy KM. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 2011;6:241-260. ArticlePubMedPMCPDF
  • 12. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008;59(Suppl 2):251-262.
  • 13. Delzenne N, Blundell J, Brouns F, Cunningham K, De Graaf K, Erkner A, Lluch A, Mars M, Peters HP, Westerterp-Plantenga M. Gastrointestinal targets of appetite regulation in humans. Obes Rev 2010;11:234-250. ArticlePubMed
  • 14. Alvarez-Castro P, Pena L, Cordido F. Ghrelin in obesity, physiological and pharmacological considerations. Mini Rev Med Chem 2013;13:541-552. ArticlePubMed
  • 15. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013;4:1829ArticlePubMedPMCPDF
  • 16. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014;156:84-96. ArticlePubMed
  • 17. Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C, Thorens B, Mithieux G. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2012;2:47-53. ArticlePubMedPMC
  • 18. de Kort S, Keszthelyi D, Masclee AA. Leaky gut and diabetes mellitus: what is the link? Obes Rev 2011;12:449-458. ArticlePubMed
  • 19. Everard A, Lazarevic V, Gaia N, Johansson M, Stahlman M, Backhed F, Delzenne NM, Schrenzel J, Francois P, Cani PD. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 2014;8:2116-2130. ArticlePubMedPMCPDF
  • 20. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-1103. ArticlePubMedPMC
  • 21. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007;292:G518-G525. ArticlePubMed
  • 22. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-1772. ArticlePubMedPDF
  • 23. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-1481. ArticlePubMedPDF
  • 24. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, Francois P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011;60:2775-2786. ArticlePubMedPMCPDF
  • 25. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104(Suppl 2):S1-S63. Article
  • 26. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009;90:1236-1243. ArticlePubMed
  • 27. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007;50:2374-2383. ArticlePubMedPDF
  • 28. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011;3:559-572. ArticlePubMedPMCPDF
  • 29. Ewaschuk J, Endersby R, Thiel D, Diaz H, Backer J, Ma M, Churchill T, Madsen K. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology 2007;46:841-850. ArticlePubMed
  • 30. Guarner F. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J Nutr 2007;137(11 Suppl):2568S-2571S. ArticlePubMed
  • 31. Moreira AP, Texeira TF, Ferreira AB, Peluzio Mdo C, Alfenas Rde C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012;108:801-809. ArticlePubMed
  • 32. Lakhan SE, Kirchgessner A. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J Transl Med 2011;9:202ArticlePubMedPMCPDF
  • 33. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013;153:228-239. ArticlePubMedPMC
  • 34. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63:727-735. ArticlePubMed
  • 35. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013;342:447-453. ArticlePubMedPMC
  • 36. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-415. ArticlePubMed
  • 37. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-916.e7. ArticlePubMed
Fig. 1

Gut microbiota regulation of host metabolism. Undigested carbohydrates are fermented by gut microbiota into short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate. SCFAs affect the host metabolism in several ways. SCFAs can signal through G protein-coupled receptor 41 (GPR41) on enteroendocrine cells, inducing the secretion of peptide YY (PYY) which inhibits gut motility, increases intestinal transit rate, and reduces the harvest of energy from the diet. Engagement of GPR43 by SCFAs has been shown to trigger the glucogon-like peptide 1 (GLP-1) to increase insulin sensitivity. Gut microbiota efficiently suppresses fasting-induced adipose factor (Fiaf) expression in the ileum, which inhibits lipoprotein lipase (LPL) activity and fat storage in white adipose tissue. SCFAs-mediated activation of GPR43 results in suppression of insulin signaling in the adipose tissue and subsequent prevention of fat accumulation. SCFAs also activate intestinal gluconeogenesis (IGN) via a gut-brain neural circuit, which can improve glucose metabolism and reduce food intake. VLDL, very low density lipoprotein; FFA, free fatty acid.

dmj-39-198-g001.jpg
Fig. 2

Effect of high fat diet (HFD) and metformin on gut microbiota and intestinal environment. A HFD induces gut microbial alteration, which increases gut permeability and reduces the expression of tight junction protein, such as zonula occludens (ZO)-1 and occludin, in the intestinal epithelial cells, results in the passage of lipopolysaccharide (LPS) into the portal blood circulation. The disruption of the gut barrier function and the gut microbiota-derived endotoxemia could contribute to the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). Metformin is able to affect the mouse microbiota and restored the decreased abundance of Akkermansia muciniphila, a mucin-degrading G (-) anaerobes, in the gut of mice fed a HFD to that of mice fed normal chow diet. A. muciniphila had similar beneficial metabolic effects to that of metformin administration.

dmj-39-198-g002.jpg

Figure & Data

References

    Citations

    Citations to this article as recorded by  
    • The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers
      Jaeyun Sung, Sanu S. Rajendraprasad, Kemuel L. Philbrick, Brent A. Bauer, Ognjen Gajic, Aditya Shah, Krzysztof Laudanski, Johan S. Bakken, Joseph Skalski, Lioudmila V. Karnatovskaia
      Journal of Critical Care.2024; 79: 154436.     CrossRef
    • Association between diagnostic imaging and biochemical markers: a possible tool for monitoring metabolic disorders
      Danila Cianciosi, Yasmany Armas Diaz, Giuseppe Grosso, José L Quiles, Francesca Giampieri, Maurizio Battino
      Current Opinion in Food Science.2024; 55: 101109.     CrossRef
    • The Effect of Cross-Sex Fecal Microbiota Transplantation on Metabolism and Hormonal Status in Adult Rats
      Andrej Feješ, Paulína Belvončíková, Dafne Porcel Sanchis, Veronika Borbélyová, Peter Celec, Mária Džunková, Roman Gardlík
      International Journal of Molecular Sciences.2024; 25(1): 601.     CrossRef
    • Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions – a narrative review
      Hanna Huber, Alina Schieren, Jens Juul Holst, Marie-Christine Simon
      The American Journal of Clinical Nutrition.2024; 119(3): 599.     CrossRef
    • Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort
      Atieh Mirzababaei, Maryam Mahmoodi, Abbasali Keshtkar, Haleh Ashraf, Faezeh Abaj, Neda Soveid, Mahya Mehri Hajmir, Mina Radmehr, Pardis Khalili, Khadijeh Mirzaei
      Frontiers in Nutrition.2024;[Epub]     CrossRef
    • Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis
      Yi Pan, Tong Bu, Xia Deng, Jue Jia, Guoyue Yuan
      Endocrine.2024; 84(1): 1.     CrossRef
    • The Role of Gut Microbiota in Obesity
      Anna Celina Durma, Adam Daniel Durma, Adam Smialowski, Leszek Czupryniak
      Advancements of Microbiology.2024; 63(1): 33.     CrossRef
    • Engineered Probiotics for the Management of Congenital Metabolic Diseases: A Systematic Review
      Meisam Barati, Erfan Mosharkesh, Amir Hossein Tahmassian, Maryam Khodaei, Masoumeh Jabbari, Ali Kalhori, Mohsen Alipour, Afshin Abdi Ghavidel, Sajad Khalili-Moghadam, Anwar Fathollahi, Sayed Hossein Davoodi
      Preventive Nutrition and Food Science.2024; 29(1): 1.     CrossRef
    • The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis
      Mohamed J. Saadh, Hani Moslem Ahmed, Zaid Khalid Alani, Rafil Adnan Hussein Al Zuhairi, Zainab M. Almarhoon, Hijaz Ahmad, Mohammed Ubaid, Nathera Hussin Alwan
      NeuroMolecular Medicine.2024;[Epub]     CrossRef
    • Characterization of the Small Bowel Microbiome Reveals Different Profiles in Human Subjects Who Are Overweight or Have Obesity
      Gabriela Leite, Gillian M. Barlow, Mohamad Rashid, Ava Hosseini, Daniel Cohrs, Gonzalo Parodi, Walter Morales, Stacy Weitsman, Ali Rezaie, Mark Pimentel, Ruchi Mathur
      American Journal of Gastroenterology.2024; 119(6): 1141.     CrossRef
    • Ingesting yeast extract causes excitation of neurogenic and myogenic colonic motor patterns in the rat
      Hongfei Li, Yanzhao Ji, Hesheng Luo, Jan D. Huizinga, Ji‐Hong Chen
      Journal of Cellular and Molecular Medicine.2024;[Epub]     CrossRef
    • Metformin intolerance in type 2 diabetes mellitus – the possibility of using a multi-strain probiotic
      Mirela Hendel, Krzysztof Irlik, Hanna Kwiendacz, Igor Łoniewski, Karolina Skonieczna-Żydecka, Janusz Gumprecht, Katarzyna Nabrdalik
      Current Topics in Diabetes.2024; (1): 1.     CrossRef
    • Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review
      Ieshita Pan, Suganiya Umapathy
      Heliyon.2024; 10(11): e32004.     CrossRef
    • IL-1 Receptor Contributes to the Maintenance of the Intestinal Barrier via IL-22 during Obesity and Metabolic Syndrome in Experimental Model
      Melissa Machado, Vanessa Rodrigues, Sara Barbosa, Jefferson Elias-Oliveira, Ítalo Pereira, Jéssica Pereira, Thaílla Pacheco, Daniela Carlos
      Microorganisms.2024; 12(8): 1717.     CrossRef
    • Gut microbiota characteristics of colorectal cancer patients in Hubei, China, and differences with cohorts from other Chinese regions
      Jianguo Shi, Hexiao Shen, Hui Huang, Lifang Zhan, Wei Chen, Zhuohui Zhou, Yongling Lv, Kai Xiong, Zhiwei Jiang, Qiyi Chen, Lei Liu
      Frontiers in Microbiology.2024;[Epub]     CrossRef
    • Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice
      Chengcheng Yang, Yao Du, Tong Zhao, Lu Zhao, Lu Liu, Luyao Liu, Xingbin Yang
      Food & Function.2024; 15(15): 8153.     CrossRef
    • Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats
      Anmol Narang, Muzamil Rashid, Shubham Thakur, Subheet Kumar Jain, Amarjeet Kaur, Sukhraj Kaur
      Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
    • The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review
      Xinyu Shen, Chunmin Ma, Yang Yang, Xiaofei Liu, Bing Wang, Yan Wang, Guang Zhang, Xin Bian, Na Zhang
      Foods.2024; 13(17): 2719.     CrossRef
    • Human Gut Microbiota and Drug Metabolism
      Archana Pant, Tushar K. Maiti, Dinesh Mahajan, Bhabatosh Das
      Microbial Ecology.2023; 86(1): 97.     CrossRef
    • Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective
      Shoumi Haldar, Yuvashree Muralidaran, Diana Míguez, Sikandar I. Mulla, Prabhakar Mishra
      Science of The Total Environment.2023; 861: 160571.     CrossRef
    • Is there a role for microbiome-based approach in common variable immunodeficiency?
      Remo Poto, Gianluca laniro, Amato de Paulis, Giuseppe Spadaro, Gianni Marone, Antonio Gasbarrini, Gilda Varricchi
      Clinical and Experimental Medicine.2023; 23(6): 1981.     CrossRef
    • Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis
      Youdong Wan, Shuya Wang, Yifan Niu, Boyang Duo, Yinshuang Liu, Zhenzhen Lu, Ruixue Zhu
      Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
    • Dietary fiber intake and fecal short-chain fatty acid concentrations are associated with lower plasma lipopolysaccharide-binding protein and inflammation
      Melisa A. Bailey, Sharon V. Thompson, Annemarie R. Mysonhimer, Jessica N. Bennett, James J. Vanhie, Michael De Lisio, Nicholas A. Burd, Naiman A. Khan, Hannah D. Holscher
      American Journal of Physiology-Gastrointestinal and Liver Physiology.2023; 324(5): G369.     CrossRef
    • Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action?
      Cheng Zha, Zheng Peng, Kunyuan Huang, Kaifa Tang, Qiang Wang, Lihua Zhu, Bangwei Che, Wei Li, Shenghan Xu, Tao Huang, Ying Yu, Wenjun Zhang
      Frontiers in Oncology.2023;[Epub]     CrossRef
    • The role of the oral microbiome in obesity and metabolic disease: potential systemic implications and effects on taste perception
      Imke Schamarek, Lars Anders, Rima M. Chakaroun, Peter Kovacs, Kerstin Rohde-Zimmermann
      Nutrition Journal.2023;[Epub]     CrossRef
    • Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health
      Hemaa Sree Kumar, Alexander S. Wisner, Jeanine M. Refsnider, Christopher J. Martyniuk, Jasenka Zubcevic
      Frontiers in Physiology.2023;[Epub]     CrossRef
    • New approach methodologies (NAMs) to study microbiome–host interactions
      Chen Liu, Jing Jin, Ivonne M.C.M. Rietjens
      Current Opinion in Toxicology.2023; 35: 100406.     CrossRef
    • The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review
      Qilong Zhao, Yu Jiang, Qian Zhao, Habasi Patrick Manzi, Li Su, Diru Liu, Xiaodan Huang, Danfeng Long, Zhenchuang Tang, Ying Zhang
      Frontiers in Nutrition.2023;[Epub]     CrossRef
    • Extension Region Domain of Soybean 7S Globulin Contributes to Serum Triglyceride‐Lowering Effect via Modulation of Bile Acids Homeostasis
      Kaining Han, Guangxin Feng, Tanghao Li, Zhili Wan, Wenjing Zhao, Xiaoquan Yang
      Molecular Nutrition & Food Research.2023;[Epub]     CrossRef
    • Gut microbiome and its clinical implications: exploring the key players in human health
      Sindhuja Koneru, Varshini Thiruvadi, Mayur Ramesh
      Current Opinion in Infectious Diseases.2023; 36(5): 353.     CrossRef
    • Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review
      Ya Li, Tonghua Liu, Lingling Qin, Lili Wu
      Journal of Translational Medicine.2023;[Epub]     CrossRef
    • Gut microbiome and prediabetes - a review
      Kartik Kumar Rathi, Nimrata Kumari, Muhammad Daniyal Javaid, Umair Saleem, Eric Mortensen, Yanjiao Zhou, Narinder Maheshwari
      Frontiers in Bacteriology.2023;[Epub]     CrossRef
    • Analysis of gut bacteriome of in utero arsenic-exposed mice using 16S rRNA-based metagenomic approach
      Shagun Shukla, Ankita Srivastava, Digvijay Verma, Siddhartha Gangopadhyay, Anchal Chauhan, Vikas Srivastava, Savita Budhwar, Dushyant Tyagi, Deepak Chand Sharma
      Frontiers in Microbiology.2023;[Epub]     CrossRef
    • Multi-omics analysis of zebrafish response to tick saliva reveals biological processes associated with alpha-Gal syndrome
      Rita Vaz-Rodrigues, Lorena Mazuecos, Margarita Villar, Marinela Contreras, Sara Artigas-Jerónimo, Almudena González-García, Christian Gortázar, José de la Fuente
      Biomedicine & Pharmacotherapy.2023; 168: 115829.     CrossRef
    • Obesity under the moonlight of c-MYC
      Yulia A. Nevzorova, Francisco Javier Cubero
      Frontiers in Cell and Developmental Biology.2023;[Epub]     CrossRef
    • Functional alterations and predictive capacity of gut microbiome in type 2 diabetes
      Nihar Ranjan Dash, Mohammad T. Al Bataineh, Rohia Alili, Habiba Al Safar, Noura Alkhayyal, Edi Prifti, Jean-Daniel Zucker, Eugeni Belda, Karine Clément
      Scientific Reports.2023;[Epub]     CrossRef
    • Postbiyotikler ve İnsülin Direnci
      Betül SARIDAĞ DEVRAN, Mendane SAKA
      Van Sağlık Bilimleri Dergisi.2023; 16(3): 268.     CrossRef
    • Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: a double-blind randomised controlled trial
      Karim Parastouei, S Saeidipoor, M Sepandi, S Abbaszadeh, M Taghdir
      BMJ Military Health.2022; 168(5): 362.     CrossRef
    • Screening strategies for quorum sensing inhibitors in combating bacterial infections
      Lan Lu, Mingxing Li, Guojuan Yi, Li Liao, Qiang Cheng, Jie Zhu, Bin Zhang, Yingying Wang, Yong Chen, Ming Zeng
      Journal of Pharmaceutical Analysis.2022; 12(1): 1.     CrossRef
    • Gut Microbiome Composition and Serum Metabolome Profile Among Individuals With Spinal Cord Injury and Normal Glucose Tolerance or Prediabetes/Type 2 Diabetes
      Jia Li, Casey Morrow, Stephen Barnes, Landon Wilson, Erika D. Womack, Amie McLain, Ceren Yarar-Fisher
      Archives of Physical Medicine and Rehabilitation.2022; 103(4): 702.     CrossRef
    • Effect of synbiotic supplementation on asprosin level in high fat diet-induced metabolic disorder in pregnant rats
      Mehrdad Naghizadeh, Mansour Karajibani, Hamed Fanaei, Farzaneh Montazerifar, Alireza Dashipour
      Mediterranean Journal of Nutrition and Metabolism.2022; 15(1): 81.     CrossRef
    • Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats
      Rubiya Khursheed, Sachin Kumar Singh, Bimlesh Kumar, Sheetu Wadhwa, Monica Gulati, Anupriya A, Ankit Awasthi, Sukriti Vishwas, Jaskiran Kaur, Leander Corrie, Arya K.R., Rajan Kumar, Niraj Kumar Jha, Piyush Kumar Gupta, Flavia Zacconi, Kamal Dua, Nitin Chi
      International Journal of Pharmaceutics.2022; 612: 121306.     CrossRef
    • Impact of synbiotic supplementation on cardiometabolic and anthropometric indices in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials
      Seyyed Mostafa Arabi, Leila Sadat Bahrami, Iman Rahnama, Amirhossein Sahebkar
      Pharmacological Research.2022; 176: 106061.     CrossRef
    • Susceptibility to Metabolic Diseases in COVID-19: To be or Not to be an Issue
      Maryam Kaviani, Somayeh Keshtkar, Saeede Soleimanian, Fatemeh Sabet Sarvestani, Negar Azarpira, Sara Pakbaz
      Frontiers in Molecular Biosciences.2022;[Epub]     CrossRef
    • Mediating effects of gut microbiota in the associations of air pollutants exposure with adverse pregnancy outcomes
      Qiangsheng Gan, Weitao Ye, Xueqin Zhao, Yaoyao Teng, Shanshan Mei, Yan Long, Jun Ma, Rehemayi Rehemutula, Xiaoyan Zhang, Fangling Zeng, Hongmei Jin, Fei Liu, Yaogang Huang, Xiaoli Gao, Chunyan Zhu
      Ecotoxicology and Environmental Safety.2022; 234: 113371.     CrossRef
    • Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery
      Eirini Martinou, Irena Stefanova, Evangelia Iosif, Angeliki M. Angelidi
      International Journal of Molecular Sciences.2022; 23(6): 3339.     CrossRef
    • Gut microbiome and prostate cancer
      Kazutoshi Fujita, Makoto Matsushita, Eri Banno, Marco A De Velasco, Koji Hatano, Norio Nonomura, Hirotsugu Uemura
      International Journal of Urology.2022; 29(8): 793.     CrossRef
    • Does Lactobacillus reuteri influence ergothioneine levels in the human body?
      Irwin K. Cheah, Jovan Z. Lee, Richard M. Y. Tang, Pei Wen Koh, Barry Halliwell
      FEBS Letters.2022; 596(10): 1241.     CrossRef
    • Postbiotics as potential new therapeutic agents for metabolic disorders management
      Yasmina Bourebaba, Krzysztof Marycz, Malwina Mularczyk, Lynda Bourebaba
      Biomedicine & Pharmacotherapy.2022; 153: 113138.     CrossRef
    • Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals
      Line Gaundal, Mari C. W. Myhrstad, Ida Rud, Terje Gjøvaag, Marte G. Byfuglien, Kjetil Retterstøl, Kirsten B. Holven, Stine M. Ulven, Vibeke H. Telle-Hansen
      Food & Nutrition Research.2022;[Epub]     CrossRef
    • Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice
      Jingjing Xu, Wu Sun, Huan Li, Zexin Gao, Guoao Hu, Jianrong Wu, Hongtao Zhang, Zhitao Li, Minjie Gao, Li Zhu, Xiaobei Zhan
      Food Bioscience.2022; 50: 102002.     CrossRef
    • Study and determination of fructan-type polysaccharide content in Erigeron annuus L
      Sergey Kovalev, A. Golovach, Vladimir Kovalev, Ewa Poleszak, Elshan Akhmedov, Olga Bobrytska
      Current Issues in Pharmacy and Medical Sciences.2022; 35(2): 95.     CrossRef
    • Searching for a Link between Bone Decay and Diabetes Type 2
      Ciro G. Isacco, Kieu C.D. Nguyen, Van H. Pham, Gianna Di Palma, Sergey K. Aityan, Diego Tomassone, Pietro Distratis, Rita Lazzaro, Mario G. Balzanelli, Francesco Inchingolo
      Endocrine, Metabolic & Immune Disorders - Drug Targets.2022; 22(9): 904.     CrossRef
    • Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model
      Ata Ur Rehman, Nimra Zafar Siddiqui, Nabeel Ahmed Farooqui, Gulzar Alam, Aneesa Gul, Bashir Ahmad, Muhammad Asim, Asif Iqbal Khan, Yi Xin, Wang Zexu, Hyo Song Ju, Wang Xin, Sun Lei, Liang Wang
      Frontiers in Nutrition.2022;[Epub]     CrossRef
    • Bacillus subtilis-Fermented Amomum xanthioides Ameliorates Metabolic-Syndrome-Like Pathological Conditions in Long-Term HFHFD-Fed Mice
      Jing-Hua Wang, Seung-Ju Hwang, Kwang-Soo Shin, Dong-Woo Lim, Chang-Gue Son
      Antioxidants.2022; 11(11): 2254.     CrossRef
    • Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet
      Yu Wang, Ting Li, Yueyue Liu, Chengcheng Yang, Lei Liu, Xiangnan Zhang, Xingbin Yang
      Food & Function.2022; 13(24): 13014.     CrossRef
    • SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role
      Ahmad Ud Din, Maryam Mazhar, Muhammed Waseem, Waqar Ahmad, Asma Bibi, Adil Hassan, Niaz Ali, Wang Gang, Gao Qian, Razi Ullah, Tariq Shah, Mehraj Ullah, Israr Khan, Muhammad Farrukh Nisar, Jianbo Wu
      Biomedicine & Pharmacotherapy.2021; 133: 110947.     CrossRef
    • Abnormal food timing and predisposition to weight gain: Role of barrier dysfunction and microbiota
      Faraz Bishehsari, Phillip A. Engen, Darbaz Adnan, Shahram Sarrafi, Sherry Wilber, Maliha Shaikh, Stefan J. Green, Ankur Naqib, Leila B. Giron, Mohamed Abdel-Mohsen, Ali Keshavarzian
      Translational Research.2021; 231: 113.     CrossRef
    • The Multiomics Analyses of Fecal Matrix and Its Significance to Coeliac Disease Gut Profiling
      Sheeana Gangadoo, Piumie Rajapaksha Pathirannahalage, Samuel Cheeseman, Yen Thi Hoang Dang, Aaron Elbourne, Daniel Cozzolino, Kay Latham, Vi Khanh Truong, James Chapman
      International Journal of Molecular Sciences.2021; 22(4): 1965.     CrossRef
    • Alzheimer’s Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models
      Maria Jose Carranza-Naval, Maria Vargas-Soria, Carmen Hierro-Bujalance, Gloria Baena-Nieto, Monica Garcia-Alloza, Carmen Infante-Garcia, Angel del Marco
      Biomolecules.2021; 11(2): 262.     CrossRef
    • Effect of a Humanized Diet Profile on Colonization Efficiency and Gut Microbial Diversity in Human Flora-Associated Mice
      Sashuang Dong, BenHua Zeng, Ling Hu, Yuling Zhang, Jiaqi Xiong, Jing Deng, Liyan Huang, ZhenLin Liao, Jie Wang, Hong Wei, Xiang Fang
      Frontiers in Nutrition.2021;[Epub]     CrossRef
    • Gut-Lung Axis in COVID-19
      Imane Allali, Youssef Bakri, Saaïd Amzazi, Hassan Ghazal, Mary E. Marquart
      Interdisciplinary Perspectives on Infectious Diseases.2021; 2021: 1.     CrossRef
    • The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients
      Qiang Li, Fang Cheng, Qiling Xu, Yuyong Su, Xuefeng Cai, Fang Zeng, Yu Zhang
      International Immunopharmacology.2021; 95: 107531.     CrossRef
    • Screening of Lactobacillus strains that enhance SCFA uptake in intestinal epithelial cells
      Da-wei Chen, Chun-meng Chen, Heng-xian Qu, Chen-yu Ren, Xian-tao Yan, Yu-jun Huang, Cheng-ran Guan, Chen-chen Zhang, Qi-ming Li, Rui-xia Gu
      European Food Research and Technology.2021; 247(5): 1049.     CrossRef
    • Probiotics-rich emulsion improves insulin signalling in Palmitate/Oleate-challenged human hepatocarcinoma cells through the modulation of Fetuin-A/TLR4-JNK-NF-κB pathway
      Malwina Mularczyk, Yasmina Bourebaba, Anna Kowalczuk, Krzyzstof Marycz, Lynda Bourebaba
      Biomedicine & Pharmacotherapy.2021; 139: 111560.     CrossRef
    • Metabolic profiles of oligosaccharides derived from four microbial polysaccharides by faecal inocula from type 2 diabetes patients
      Jingjing Xu, Weibao Liu, Jianrong Wu, Wen Wang, Zhuoping Wang, Xun Yu, Hongtao Zhang, Li Zhu, Xiaobei Zhan
      International Journal of Food Sciences and Nutrition.2021; 72(8): 1083.     CrossRef
    • Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes
      Yang Liu, Wei Zhang, Jiating Zhao, Xiaoying Lin, Liming Wang, Liwei Cui, Junfang Zhang, Bai Li, Yu-Feng Li
      Environmental Science: Nano.2021; 8(5): 1437.     CrossRef
    • Diabetes Mellitus’ta Mikrobiyotanın Rolü ve Hedeflenmesi
      Zinnet Şevval AKSOYALP, Cahit NACİTARHAN
      Turkish Journal of Diabetes and Obesity.2021; 5(1): 51.     CrossRef
    • Effect of Bifidobacterium on olanzapine-induced body weight and appetite changes in patients with psychosis
      Ye Yang, Yujun Long, Dongyu Kang, Chenchen Liu, Jingmei Xiao, Renrong Wu, Jingping Zhao
      Psychopharmacology.2021; 238(9): 2449.     CrossRef
    • Epigenome – A mediator for host-microbiome crosstalk
      Robert C. Peery, Mohan Pammi, Erika Claud, Lanlan Shen
      Seminars in Perinatology.2021; 45(6): 151455.     CrossRef
    • Gut microbiome and its meta-omics perspectives: profound implications for cardiovascular diseases
      Jing Xu, Yuejin Yang
      Gut Microbes.2021;[Epub]     CrossRef
    • Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters
      Stefani A. Derrick, Aleksandra S. Kristo, Scott K. Reaves, Angelos K. Sikalidis
      International Journal of Environmental Research and Public Health.2021; 18(17): 9364.     CrossRef
    • Disease trends in a young Chinese cohort according to fecal metagenome and plasma metabolites
      Zhuye Jie, Suisha Liang, Qiuxia Ding, Fei Li, Xiaohuan Sun, Yuxiang Lin, Peishan Chen, Kaiye Cai, Hongcheng Zhou, Haorong Lu, Xiaohan Wang, Tao Zhang, Liang Xiao, Huanming Yang, Jian Wang, Yong Hou, Karsten Kristiansen, Huijue Jia, Xun Xu
      Medicine in Microecology.2021; 9: 100037.     CrossRef
    • Lipid Metabolism, Disorders and Therapeutic Drugs - Review
      Vijayakumar Natesan, Sung-Jin Kim
      Biomolecules & Therapeutics.2021; 29(6): 596.     CrossRef
    • Role of Intestinal Microbiota in Metabolism of Voglibose In Vitro and In Vivo
      Mahesh Raj Nepal, Mi Jeong Kang, Geon Ho Kim, Dong Ho Cha, Ju-Hyun Kim, Tae Cheon Jeong
      Diabetes & Metabolism Journal.2020; 44(6): 908.     CrossRef
    • Dissecting genome-wide studies for microbiome-related metabolic diseases
      Denis Awany, Imane Allali, Emile R Chimusa
      Human Molecular Genetics.2020; 29(R1): R73.     CrossRef
    • Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment
      Anna De Filippis, Hammad Ullah, Alessandra Baldi, Marco Dacrema, Cristina Esposito, Emanuele Ugo Garzarella, Cristina Santarcangelo, Ariyawan Tantipongpiradet, Maria Daglia
      International Journal of Molecular Sciences.2020; 21(14): 4929.     CrossRef
    • The public health rationale for increasing dietary fibre: Health benefits with a focus on gut microbiota
      F. Koç, S. Mills, C. Strain, R. P. Ross, C. Stanton
      Nutrition Bulletin.2020; 45(3): 294.     CrossRef
    • Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin–nicotinamide-induced diabetic rats
      Kehinde S Olaniyi, Oluwatobi A Amusa, Emmanuel D Areola, Lawrence A Olatunji
      Experimental Biology and Medicine.2020; 245(7): 667.     CrossRef
    • Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials
      Michał Wiciński, Jakub Gębalski, Jakub Gołębiewski, Bartosz Malinowski
      Microorganisms.2020; 8(8): 1148.     CrossRef
    • Exploring role of probiotics and Ganoderma lucidum extract powder as solid carriers to solidify liquid self-nanoemulsifying delivery systems loaded with curcumin
      Rubiya Khursheed, Sachin Kumar Singh, Sheetu Wadhwa, Monica Gulati, Ankit Awasthi, Rajan Kumar, Arya Kadukkattil Ramanunny, Bhupinder Kapoor, Pushpendra Kumar, Leander Corrie
      Carbohydrate Polymers.2020; 250: 116996.     CrossRef
    • A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats
      Fuqiang Zhao, Qibing Liu, Jun Cao, Yunsheng Xu, Zhisheng Pei, Haofei Fan, Yiqiong Yuan, Xuanri Shen, Chuan Li
      Food and Chemical Toxicology.2020; 135: 110886.     CrossRef
    • Do Kimchi and Cheonggukjang Probiotics as a Functional Food Improve Androgenetic Alopecia? A Clinical Pilot Study
      Dong-Wook Park, Hyo Serk Lee, Myeong-Seung Shim, Kyu Jin Yum, Ju Tae Seo
      The World Journal of Men's Health.2020; 38(1): 95.     CrossRef
    • Gut microbiota of obese and diabetic Thai subjects and interplay with dietary habits and blood profiles
      Lucsame Gruneck, Niwed Kullawong, Kongkiat Kespechara, Siam Popluechai
      PeerJ.2020; 8: e9622.     CrossRef
    • Relationship Between the Gastrointestinal Side Effects of an Anti-Hypertensive Medication and Changes in the Serum Lipid Metabolome
      Yoomin Ahn, Myung Hee Nam, Eungbin Kim
      Nutrients.2020; 12(1): 205.     CrossRef
    • Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats
      Judy Triplett, David Ellis, Amber Braddock, Erin Roberts, Katherine Ingram, Eric Perez, Amanda Short, Dominique Brown, Victoria Hutzley, Chelsey Webb, Armando Soto, Victor Chan
      Gut Microbes.2020; 11(4): 706.     CrossRef
    • Impact of probiotics and prebiotics targeting metabolic syndrome
      Douglas Xavier-Santos, Raquel Bedani, Egidio Dorea Lima, Susana Marta Isay Saad
      Journal of Functional Foods.2020; 64: 103666.     CrossRef
    • Dynamic alterations in early intestinal development, microbiota and metabolome induced by in ovo feeding of L-arginine in a layer chick model
      Dong Dai, Shu-geng Wu, Hai-jun Zhang, Guang-hai Qi, Jing Wang
      Journal of Animal Science and Biotechnology.2020;[Epub]     CrossRef
    • The possible role of a bacterial aspartate β-decarboxylase in the biosynthesis of alamandine
      Shalinee Jha, Robert C. Speth, Peter Macheroux
      Medical Hypotheses.2020; 144: 110038.     CrossRef
    • Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review
      Karen T Elvers, Victoria J Wilson, Ashley Hammond, Lorna Duncan, Alyson L Huntley, Alastair D Hay, Esther T van der Werf
      BMJ Open.2020; 10(9): e035677.     CrossRef
    • Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives
      Michael Napolitano, Mihai Covasa
      Frontiers in Microbiology.2020;[Epub]     CrossRef
    • Maternal Microdeletion at the H19/Igf2 ICR in Mice Increases Offspring Susceptibility to In Utero Environmental Perturbation
      Anandita Pal, Judy Oakes, Marwa Elnagheeb, Folami Y Ideraabdullah
      Epigenetics Insights.2020; 13: 251686572097057.     CrossRef
    • Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes
      Duaa Ahmed Elhag, Manoj Kumar, Souhaila Al Khodor
      International Journal of Molecular Sciences.2020; 22(1): 125.     CrossRef
    • Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial
      Nazila Kassaian, Awat Feizi, Ashraf Aminorroaya, Masoud Amini
      Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2019; 13(5): 2991.     CrossRef
    • The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study
      Yuling Dong, Hao Sun, Weichao Yang, Shuang Ma, Beibei Du, Hui Xu
      Nutrients.2019; 11(3): 636.     CrossRef
    • Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters
      Xiang Li, Huali Wang, Tianxin Wang, Fuping Zheng, Hao Wang, Chengtao Wang
      Food & Function.2019; 10(2): 775.     CrossRef
    • Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: Evidence from a population-based epidemiological study
      Tao Liu, Xiaojiao Chen, Yanjun Xu, Wei Wu, Wenli Tang, Zihui Chen, Guiyuan Ji, Jiewen Peng, Qi Jiang, Jianpeng Xiao, Xing Li, Weilin Zeng, Xiaojun Xu, Jianxiong Hu, Yuming Guo, Fei Zou, Qingfeng Du, Hongwei Zhou, Yan He, Wenjun Ma
      Environment International.2019; 130: 104882.     CrossRef
    • A systematic literature review of the effect of anthocyanins on gut microbiota populations
      E. O. Igwe, K. E. Charlton, Y. C. Probst, K. Kent, M. E. Netzel
      Journal of Human Nutrition and Dietetics.2019; 32(1): 53.     CrossRef
    • Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats
      Yang Liu, Jun Ji, Wei Zhang, Yao Suo, Jiating Zhao, Xiaoying Lin, Liwei Cui, Bai Li, Huaiqiang Hu, Chunying Chen, Yu-Feng Li
      Ecotoxicology and Environmental Safety.2019; 185: 109720.     CrossRef
    • Modulation of Gut Microbiota by Soybean 7S Globulin Peptide That Involved Lipopolysaccharide–Peptide Interaction
      Kaining Han, Danyang Luo, Yuan Zou, Shiyuan Dong, Zhili Wan, Xiaoquan Yang
      Journal of Agricultural and Food Chemistry.2019; 67(8): 2201.     CrossRef
    • The PPAR–microbiota–metabolic organ trilogy to fine‐tune physiology
      Hui Yun Penny Oh, Vivegan Visvalingam, Walter Wahli
      The FASEB Journal.2019; 33(9): 9706.     CrossRef
    • Quorum sensing inhibitors as antipathogens: biotechnological applications
      Vipin Chandra Kalia, Sanjay K.S. Patel, Yun Chan Kang, Jung-Kul Lee
      Biotechnology Advances.2019; 37(1): 68.     CrossRef
    • Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance
      V. Jacquier, A. Nelson, M. Jlali, L. Rhayat, K.S. Brinch, E. Devillard
      Poultry Science.2019; 98(6): 2548.     CrossRef
    • The alteration of gut microbiota in newly diagnosed type 2 diabetic patients
      Pei-Chi Chen, Yi-Wen Chien, Suh-Ching Yang
      Nutrition.2019; 63-64: 51.     CrossRef
    • Mechanisms of Action of Probiotics
      Julio Plaza-Diaz, Francisco Javier Ruiz-Ojeda, Mercedes Gil-Campos, Angel Gil
      Advances in Nutrition.2019; 10: S49.     CrossRef
    • Decrease in αβ/γδ T‐cell ratio is accompanied by a reduction in high‐fat diet‐induced weight gain, insulin resistance, and inflammation
      Gwenaëlle Le Menn, Brigitte Sibille, Joseph Murdaca, Anne-Sophie Rousseau, Raphaëlle Squillace, Bastien Vergoni, Mireille Cormont, Isabelle Niot, Paul A. Grimaldi, Isabelle Mothe-Satney, Jaap G. Neels
      The FASEB Journal.2019; 33(2): 2553.     CrossRef
    • Akkermansia muciniphila is a new universal probiotic on the basis of live human commensal gut bacteria: the reality or legend?
      B. A. Shenderov, S. M. Yudin, A. V. Zagaynova, M. P. Shevyreva
      Journal of microbiology, epidemiology and immunobiology.2019; 96(4): 105.     CrossRef
    • Dietary metabolism, the gut microbiome, and heart failure
      W. H. Wilson Tang, Daniel Y. Li, Stanley L. Hazen
      Nature Reviews Cardiology.2019; 16(3): 137.     CrossRef
    • Probiotic properties of Lactobacillus strains from traditional fermented yogurt in Xinjiang
      Ruokun Yi, Fang Tan, Xin Zhao, Z.B. Xu, D.Q. Chen, J.Y. Liu
      E3S Web of Conferences.2019; 131: 01121.     CrossRef
    • Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives
      Adriana Florinela Cӑtoi, Dan Cristian Vodnar, Andreea Corina, Dragana Nikolic, Roberto Citarrella, Pablo Pérez-Martínez, Manfredi Rizzo
      Current Pharmaceutical Design.2019; 25(18): 2038.     CrossRef
    • Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity
      Mary Jane West-Eberhard
      Proceedings of the National Academy of Sciences.2019; 116(3): 723.     CrossRef
    • Impact of intestinal microbiota in patients with heart failure: A systematic review
      Francesc Formiga, Cristiana Isabel Ferreira Teles, David Chivite
      Medicina Clínica (English Edition).2019; 153(10): 402.     CrossRef
    • Impacto de la microbiota intestinal en los pacientes con insuficiencia cardíaca: revisión sistemática
      Francesc Formiga, Cristiana Isabel Ferreira Teles, David Chivite
      Medicina Clínica.2019; 153(10): 402.     CrossRef
    • Additional Effect of Dietary Fiber in Patients with Type 2 Diabetes Mellitus Using Metformin and Sulfonylurea: An Open-Label, Pilot Trial
      Seung-Eun Lee, Yongbin Choi, Ji Eun Jun, You-Bin Lee, Sang-Man Jin, Kyu Yeon Hur, Gwang Pyo Ko, Moon-Kyu Lee
      Diabetes & Metabolism Journal.2019; 43(4): 422.     CrossRef
    • Human Milk Oligosaccharides and Immune System Development
      Julio Plaza-Díaz, Luis Fontana, Angel Gil
      Nutrients.2018; 10(8): 1038.     CrossRef
    • Oil tea improves glucose and lipid levels and alters gut microbiota in type 2 diabetic mice
      Rui Lin, Xuan He, Huafeng Chen, Qin He, Ziting Yao, Yuanfan Li, Hui Yang, Steve Simpson
      Nutrition Research.2018; 57: 67.     CrossRef
    • The journey of gut microbiome – An introduction and its influence on metabolic disorders
      Ankita Chattopadhyay, S. Mythili
      Frontiers in Biology.2018; 13(5): 327.     CrossRef
    • The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into “Old” Diseases
      Igor Alexander Harsch, Peter Christopher Konturek
      Medical Sciences.2018; 6(2): 32.     CrossRef
    • Implications of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications
      Alina Mihaela Leustean, Manuela Ciocoiu, Anca Sava, Claudia Florida Costea, Mariana Floria, Claudia Cristina Tarniceriu, Daniela Maria Tanase
      Journal of Diabetes Research.2018; 2018: 1.     CrossRef
    • An alternative storage method for characterization of the intestinal microbiota through next generation sequencing
      Roberto Marques Ribeiro, Marcela de Souza-Basqueira, Léa Campos de Oliveira, Flavia Cristina Salles, Natalia Bueno Pereira, Ester Cerdeira Sabino
      Revista do Instituto de Medicina Tropical de São Paulo.2018;[Epub]     CrossRef
    • Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects
      E. Korcz, Z. Kerényi, L. Varga
      Food & Function.2018; 9(6): 3057.     CrossRef
    • Intestinal Bacterial Flora and Alzheimer’s Disease
      M. Bostanciklioğlu
      Neurophysiology.2018; 50(2): 140.     CrossRef
    • Capsaicin in Metabolic Syndrome
      Sunil K. Panchal, Edward Bliss, Lindsay Brown
      Nutrients.2018; 10(5): 630.     CrossRef
    • Proceedings of the 2017 ASPEN Research Workshop—Gastric Bypass: Role of the Gut
      Ajay Kumar Jain, Carel W. le Roux, Puneet Puri, Ali Tavakkoli, Nana Gletsu‐Miller, Blandine Laferrère, Richard Kellermayer, John K. DiBaise, Robert G. Martindale, Bruce M. Wolfe
      Journal of Parenteral and Enteral Nutrition.2018; 42(2): 279.     CrossRef
    • Gut-microbiome-related LCT genotype and 2-year changes in body composition and fat distribution: the POUNDS Lost Trial
      Yoriko Heianza, Dianjianyi Sun, Wenjie Ma, Yan Zheng, Catherine M. Champagne, George A. Bray, Frank M. Sacks, Lu Qi
      International Journal of Obesity.2018; 42(9): 1565.     CrossRef
    • Ophiopogonin D alleviates high‐fat diet‐induced metabolic syndrome and changes the structure of gut microbiota in mice
      Siyu Chen, Xiao Li, Li Liu, Chang Liu, Xiao Han
      The FASEB Journal.2018; 32(3): 1139.     CrossRef
    • Differences in intestinal microflora and metabolites between patients with schizophrenia, depression, bipolar disorder, and healthy subjects: protocol for a case-control study
      Yi-Huan Chen, Zheng-Wu Peng, Xuan Zhang, Jie Bai, Shou-Fen Yu, Xiao-Sa Li, Xiao-Ling Qiang, Ping Zhou, Hong He, Hua-Ning Wang
      Asia Pacific Journal of Clinical Trials: Nervous System Diseases.2018; 3(3): 120.     CrossRef
    • Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice
      David Ma, Amy C. Wang, Ishita Parikh, Stefan J. Green, Jared D. Hoffman, George Chlipala, M. Paul Murphy, Brent S. Sokola, Björn Bauer, Anika M. S. Hartz, Ai-Ling Lin
      Scientific Reports.2018;[Epub]     CrossRef
    • Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes
      Xinpu Chen, Sridevi Devaraj
      Current Diabetes Reports.2018;[Epub]     CrossRef
    • Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism
      Juan Liu, Shijun Yue, Zhirui Yang, Wuwen Feng, Xintong Meng, Aiting Wang, Cheng Peng, Changyun Wang, Dan Yan
      Pharmacological Research.2018; 134: 40.     CrossRef
    • Nutrients and Oxidative Stress: Friend or Foe?
      Bee Ling Tan, Mohd Esa Norhaizan, Winnie-Pui-Pui Liew, Rodrigo Valenzuela
      Oxidative Medicine and Cellular Longevity.2018;[Epub]     CrossRef
    • Fäkaler Mikrobiomtransfer
      C. Lübbert, B. Salzberger, J. Mössner
      Der Internist.2017; 58(5): 456.     CrossRef
    • Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases
      Xuan Li, Keita Watanabe, Ikuo Kimura
      Frontiers in Immunology.2017;[Epub]     CrossRef
    • Probiotics Ingestion Does Not Directly Affect Thyroid Hormonal Parameters in Hypothyroid Patients on Levothyroxine Treatment
      Giorgia Spaggiari, Giulia Brigante, Sara De Vincentis, Umberto Cattini, Laura Roli, Maria Cristina De Santis, Enrica Baraldi, Simonetta Tagliavini, Manuela Varani, Tommaso Trenti, Vincenzo Rochira, Manuela Simoni, Daniele Santi
      Frontiers in Endocrinology.2017;[Epub]     CrossRef
    • Microbiota manipulation for weight change
      Tal Dror, Yaakov Dickstein, Grégory Dubourg, Mical Paul
      Microbial Pathogenesis.2017; 106: 146.     CrossRef
    • Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms
      Yong Zhang, Weijia Kong, Jiandong Jiang
      Science China Life Sciences.2017; 60(6): 601.     CrossRef
    • Gut Microbiota in Health and Probiotics in Functional Bowel Disease
      Jai Hyun Rhyou
      The Ewha Medical Journal.2017; 40(1): 22.     CrossRef
    • Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation
      Min Ma, Masayuki Okuyama, Megumi Sato, Takayoshi Tagami, Patcharapa Klahan, Yuya Kumagai, Haruhide Mori, Atsuo Kimura
      Applied Microbiology and Biotechnology.2017; 101(16): 6399.     CrossRef
    • A Fermented Whole Grain Prevents Lipopolysaccharides‐Induced Dysfunction in Human Endothelial Progenitor Cells
      Laura Giusti, Morena Gabriele, Giuseppe Penno, Monia Garofolo, Vincenzo Longo, Stefano Del Prato, Daniela Lucchesi, Laura Pucci, Grant N. Pierce
      Oxidative Medicine and Cellular Longevity.2017;[Epub]     CrossRef
    • What Bariatric Surgery Can Teach Us About Endoluminal Treatment of Obesity and Metabolic Disorders
      Lee M. Kaplan
      Gastrointestinal Endoscopy Clinics of North America.2017; 27(2): 213.     CrossRef
    • An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus
      Marie S. Møller, Yong Jun Goh, Kasper Bøwig Rasmussen, Wojciech Cypryk, Hasan Ufuk Celebioglu, Todd R. Klaenhammer, Birte Svensson, Maher Abou Hachem, Patrick D. Schloss
      Applied and Environmental Microbiology.2017;[Epub]     CrossRef
    • Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation
      Na R. Shin, Shambhunath Bose, Jing-Hua Wang, AbuZar Ansari, Soo-Kyoung Lim, Young-won Chin, Han-seok Choi, Hojun Kim
      Frontiers in Microbiology.2017;[Epub]     CrossRef
    • Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid–Treated Animals Receiving Parenteral Nutrition
      Ajay Kumar Jain, Abhineet Sharma, Sumit Arora, Keith Blomenkamp, Ik Chan Jun, Robert Luong, David John Westrich, Aayush Mittal, Paula M. Buchanan, Miguel A. Guzman, John Long, Brent A. Neuschwander‐Tetri, Jeffery Teckman
      Journal of Parenteral and Enteral Nutrition.2017; 41(2): 198.     CrossRef
    • Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics
      Mingqian He, Bingyin Shi
      Cell & Bioscience.2017;[Epub]     CrossRef
    • Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D
      Kenneth K. Barfod, Michael Roggenbuck, Suzan Al-Shuweli, Dalia Fakih, Søren J. Sørensen, Grith L. Sørensen
      Heliyon.2017; 3(3): e00262.     CrossRef
    • Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals
      Sabri Rial, Antony Karelis, Karl-F. Bergeron, Catherine Mounier
      Nutrients.2016; 8(5): 281.     CrossRef
    • Emerging Technologies for Gut Microbiome Research
      Jason W. Arnold, Jeffrey Roach, M. Andrea Azcarate-Peril
      Trends in Microbiology.2016; 24(11): 887.     CrossRef
    • Network-Thinking: Graphs to Analyze Microbial Complexity and Evolution
      Eduardo Corel, Philippe Lopez, Raphaël Méheust, Eric Bapteste
      Trends in Microbiology.2016; 24(3): 224.     CrossRef
    • Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota
      Blanca S. Noriega, Marcos A. Sanchez-Gonzalez, Daria Salyakina, Jonathan Coffman
      Case Reports in Medicine.2016; 2016: 1.     CrossRef
    • Human Microbiome and its Association With Health and Diseases
      Asmaa A. Althani, Hany E. Marei, Wedad S. Hamdi, Gheyath K. Nasrallah, Mohamed E. El Zowalaty, Souhaila Al Khodor, Maha Al-Asmakh, Hassan Abdel-Aziz, Carlo Cenciarelli
      Journal of Cellular Physiology.2016; 231(8): 1688.     CrossRef
    • Redefining Healthy Urine: A Cross-Sectional Exploratory Metagenomic Study of People With and Without Bladder Dysfunction
      Suzanne L. Groah, Marcos Pérez-Losada, Ljubica Caldovic, Inger H. Ljungberg, Bruce M. Sprague, Eduardo Castro-Nallar, Neel J. Chandel, Michael H. Hsieh, Hans G. Pohl
      Journal of Urology.2016; 196(2): 579.     CrossRef
    • Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice
      Yiseul Yeom, Bong-Soo Kim, Se-Jae Kim, Yuri Kim
      BMC Complementary and Alternative Medicine.2016;[Epub]     CrossRef
    • Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes
      Theresa D'Aquila, Yu-Han Hung, Alicia Carreiro, Kimberly K. Buhman
      Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.2016; 1861(8): 730.     CrossRef
    • The Janus-Face of Bacteriophages across Human Body Habitats
      Adam Wahida, Klaus Ritter, Hans-Peter Horz, James B. Bliska
      PLOS Pathogens.2016; 12(6): e1005634.     CrossRef
    • Obesity and Cancer—Opportunities to Break the Link
      Daniel F. Argolo, Clifford A. Hudis, Neil M. Iyengar
      Current Breast Cancer Reports.2016; 8(1): 22.     CrossRef
    • Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds
      Meng Li, Xiangbing Shu, Hanchen Xu, Chunlei Zhang, Lili Yang, Li Zhang, Guang Ji
      Journal of Translational Medicine.2016;[Epub]     CrossRef
    • Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome
      Lukasz Kaska, Tomasz Sledzinski, Agnieszka Chomiczewska, Agnieszka Dettlaff-Pokora, Julian Swierczynski
      World Journal of Gastroenterology.2016; 22(39): 8698.     CrossRef
    • Fäkale Mikrobiotatransplantation (FMT)
      C. Lübbert
      Der Diabetologe.2016; 12(6): 409.     CrossRef
    • Metformin and the gastrointestinal tract
      Laura J. McCreight, Clifford J. Bailey, Ewan R. Pearson
      Diabetologia.2016; 59(3): 426.     CrossRef
    • Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats
      Julie Reygner, Lydia Lichtenberger, Ghada Elmhiri, Samir Dou, Narges Bahi-Jaber, Larbi Rhazi, Flore Depeint, Veronique Bach, Hafida Khorsi-Cauet, Latifa Abdennebi-Najar, Hauke Smidt
      PLOS ONE.2016; 11(10): e0164614.     CrossRef
    • The human gut microbiome in health: establishment and resilience of microbiota over a lifetime
      Kacy Greenhalgh, Kristen M. Meyer, Kjersti M. Aagaard, Paul Wilmes
      Environmental Microbiology.2016; 18(7): 2103.     CrossRef
    • Surgical Management of Metabolic Syndrome Related to Morbid Obesity
      Scott T. Rehrig
      Primary Care: Clinics in Office Practice.2016; 43(1): 145.     CrossRef
    • Dietary silver nanoparticles can disturb the gut microbiota in mice
      Sybille van den Brule, Jérôme Ambroise, Hélène Lecloux, Clément Levard, Romain Soulas, Pieter-Jan De Temmerman, Mihaly Palmai-Pallag, Etienne Marbaix, Dominique Lison
      Particle and Fibre Toxicology.2015;[Epub]     CrossRef
    • Probiotics as Complementary Treatment for Metabolic Disorders
      Mélanie Le Barz, Fernando F. Anhê, Thibaut V. Varin, Yves Desjardins, Emile Levy, Denis Roy, Maria C. Urdaci, André Marette
      Diabetes & Metabolism Journal.2015; 39(4): 291.     CrossRef
    • Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk
      Luca Miele, Valentina Giorgio, Maria Adele Alberelli, Erica De Candia, Antonio Gasbarrini, Antonio Grieco
      Current Cardiology Reports.2015;[Epub]     CrossRef
    • Disease Prevention and Health Promotion
      Ather Ali, David L. Katz
      American Journal of Preventive Medicine.2015; 49(5): S230.     CrossRef
    • Creating Healthier Microbiomes, from Conception to Childhood: A Clinical Conversation with Geeta Maker-Clark, MD, and Robert Rountree, MD

      Alternative and Complementary Therapies.2015; 21(5): 189.     CrossRef
    • Prebiotic consumption and the incidence of overweight in a Mediterranean cohort: the Seguimiento Universidad de Navarra Project
      Aurora Perez-Cornago, Miguel A Martinez-Gonzalez, Miguel Ruiz-Canela, Ignacio Jaurrieta, Silvia Carlos, Carmen Sayon-Orea, Maira Bes-Rastrollo
      The American Journal of Clinical Nutrition.2015; 102(6): 1554.     CrossRef

    • PubReader PubReader
    • Cite this Article
      Cite this Article
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Gut Microbiota and Metabolic Disorders
      Diabetes Metab J. 2015;39(3):198-203.   Published online June 15, 2015
      Close
    • XML DownloadXML Download
    Figure
    • 0
    • 1
    Gut Microbiota and Metabolic Disorders
    Image Image
    Fig. 1 Gut microbiota regulation of host metabolism. Undigested carbohydrates are fermented by gut microbiota into short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate. SCFAs affect the host metabolism in several ways. SCFAs can signal through G protein-coupled receptor 41 (GPR41) on enteroendocrine cells, inducing the secretion of peptide YY (PYY) which inhibits gut motility, increases intestinal transit rate, and reduces the harvest of energy from the diet. Engagement of GPR43 by SCFAs has been shown to trigger the glucogon-like peptide 1 (GLP-1) to increase insulin sensitivity. Gut microbiota efficiently suppresses fasting-induced adipose factor (Fiaf) expression in the ileum, which inhibits lipoprotein lipase (LPL) activity and fat storage in white adipose tissue. SCFAs-mediated activation of GPR43 results in suppression of insulin signaling in the adipose tissue and subsequent prevention of fat accumulation. SCFAs also activate intestinal gluconeogenesis (IGN) via a gut-brain neural circuit, which can improve glucose metabolism and reduce food intake. VLDL, very low density lipoprotein; FFA, free fatty acid.
    Fig. 2 Effect of high fat diet (HFD) and metformin on gut microbiota and intestinal environment. A HFD induces gut microbial alteration, which increases gut permeability and reduces the expression of tight junction protein, such as zonula occludens (ZO)-1 and occludin, in the intestinal epithelial cells, results in the passage of lipopolysaccharide (LPS) into the portal blood circulation. The disruption of the gut barrier function and the gut microbiota-derived endotoxemia could contribute to the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). Metformin is able to affect the mouse microbiota and restored the decreased abundance of Akkermansia muciniphila, a mucin-degrading G (-) anaerobes, in the gut of mice fed a HFD to that of mice fed normal chow diet. A. muciniphila had similar beneficial metabolic effects to that of metformin administration.
    Gut Microbiota and Metabolic Disorders
    Hur KY, Lee MS. Gut Microbiota and Metabolic Disorders. Diabetes Metab J. 2015;39(3):198-203.
    DOI: https://doi.org/10.4093/dmj.2015.39.3.198.

    Diabetes Metab J : Diabetes & Metabolism Journal
    Close layer
    TOP