Korean Diabetes Journal 2000;24(4):413-420.
Published online January 1, 2001.
Regulation of mFABP (fatty acid binding protein) Expression by PPAR in Cultured Human Skeletal Muscle Cell.
Hyeosn Jeong Jeon, Won Shik Shinn, Jeong Mi Kim, Hye Kyung Hong, Kyong Soo Park, Seong Yeon Kim, Hong Kyu Lee
1Department of Internal Medicine, Seoul National University Medical Research Center, Seoul, Korea.
2The Institute of Endocrinology, Seoul National University Medical Research Center, Seoul, Korea.
3Nutrition and Metabolism research Center, Seoul National University Medical Research Center, Seoul, Korea.
Fatty acid binding protein (FABP), putative mammalian fatty acid transporter, plays a role in fatty acid transport, the modulation of cellular signal transduction pathways and the protection against detergent like effects of fatty acids. FABP found in liver, adipose tissue, heart, skeletal muscle and FABP in skeletal muscle accounts for 2% of total protein mass. FABP expression has shown to be up-regulated by PPAR in liver and adipocyte. Adipocyte and liver FABP genes have a functional PPRE (PPAR responsive element) in their promoter region. This evidence led us to investigate for a possible the regulation of mFABP expression by PPAR in cultured human skeletal muscle cell. METHODS: Myoblast were cultured in SkGM for 4weeks and were differentiated into myocyte in MEM for 4days. The myocytes were treated with PPAR ligand (troglitazone: 5 g/mL) or transduction with adenovirus-PPAR 1 (Ad-PPAR 1). mFABP expression was identified by northern blot. RESULTS: mFABP expression was up-regulated by 4.0+/-1.2 fold in the PPAR ligand (p<0.05). There was increased in mFABP expression with transduction with adenovirus-PPAR 1 while there was no change in mFABP expression which transducted with adenovirus - -galactosidase. CONCLUSION: These results demonstrates that mFABP expression is up-regulated by both PPAR ligand and by PPAR 1 over expression in cultured human skeletal muscle cells.
Key Words: Muscle fatty acid binding protein, PPAR 1, human skeletal muscle cell

Editorial Office
101-2104, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea​
Tel: +82-2-714-9064    Fax: +82-2-714-9084    E-mail: diabetes@kams.or.kr                

Copyright © 2022 by Korean Diabetes Association.

Developed in M2PI

Close layer