Korean Diabetes Journal 2004;28(6):468-477.
Published online December 1, 2004.
Hypothalamic AMPK Activity in Diabetic Rats.
Churl Namkoong, Min Seon Kim, Woo Je Lee, Pil Geum Jang, Seong Min Han, Eun Hee Koh, Joong Yeol Park, Ki Up Lee
1Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea.
2Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor that is activated during states of low energy charge and it regulates the various metabolic pathways to reestablish the normal cellular energy balance. It has recently been demonstrated that AMPK activity is altered by the state of energy metabolism in the hypothalamic neurons and this mediates the feeding response. METHODS: Diabetes was induced by an intra-peritoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. The diabetic rats were maintained for 3 weeks with or without insulin treatment. 3 weeks later, we collected hypothalamus and we then assayed the phosphorylation of AMPK and the activity of acetyl CoA carboxylase (ACC) and isoform-specfic AMPK. To determine the effect of hypothalamic AMPK inhibition on diabetic hyperphagia, we administered an AMPK inhibitor, compound C, into the third ventricle in the STZ-induced diabetic rats. RESULTS: Phosphorylation of AMPK, which is a marker of AMPK activation, increased in the hypothalamus of the STZ-induced diabetic rats (DR). Moreover, 2-AMPK activity, but not 1-AMPK activity, increased by 2-fold in hypothalamus of the DRs. Phosphorylation of hypothalamic acetyl CoA carboxylase (ACC), a key downstream enzyme of AMPK, also increased in the DRs and this caused a reduction in ACC activity. Insulin treatment completely reversed the diabetesinduced changes in the hypothalamic AMPK and ACC, suggesting that insulin deficiency was associated with the changes in hypothalamic AMPK and ACC. Inhibition of AMPK by an intracerebroventricular administration of AMPK inhibitor, compound C, attenuated the development of diabetic hyperphagia and reduced the blood glucose levels in DRs. CONCLUSION: We have demonstrated that hypothalamic AMPK activity increased in the DRs, and inhibition of hypothalamic AMPK activity attenuated the development of diabetic hyperphagia. These data indicate that the enhanced hypothalamic AMPK activity may contribute to the development of diabetic hyperphagia
Key Words: AMP-activated protein kinase (AMPK), Acetyl CoA carboxylase (ACC), Streptozotocin, Diabetes, Hyperphagia, Hypothalamus

Editorial Office
101-2104, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea​
Tel: +82-2-714-9064    Fax: +82-2-714-9084    E-mail: diabetes@kams.or.kr                

Copyright © 2022 by Korean Diabetes Association.

Developed in M2PI

Close layer