Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Articles

Page Path
HOME > Diabetes Metab J > Volume 28(6); 2004 > Article
Original Article Hypothalamic AMPK Activity in Diabetic Rats.
Churl Namkoong, Min Seon Kim, Woo Je Lee, Pil Geum Jang, Seong Min Han, Eun Hee Koh, Joong Yeol Park, Ki Up Lee
Diabetes & Metabolism Journal 2004;28(6):468-477
DOI: https://doi.org/
Published online: December 1, 2004
  • 1,064 Views
  • 21 Download
  • 0 Crossref
  • 0 Scopus
1Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea.
2Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
prev next

BACKGROUND
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor that is activated during states of low energy charge and it regulates the various metabolic pathways to reestablish the normal cellular energy balance. It has recently been demonstrated that AMPK activity is altered by the state of energy metabolism in the hypothalamic neurons and this mediates the feeding response. METHODS: Diabetes was induced by an intra-peritoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. The diabetic rats were maintained for 3 weeks with or without insulin treatment. 3 weeks later, we collected hypothalamus and we then assayed the phosphorylation of AMPK and the activity of acetyl CoA carboxylase (ACC) and isoform-specfic AMPK. To determine the effect of hypothalamic AMPK inhibition on diabetic hyperphagia, we administered an AMPK inhibitor, compound C, into the third ventricle in the STZ-induced diabetic rats. RESULTS: Phosphorylation of AMPK, which is a marker of AMPK activation, increased in the hypothalamus of the STZ-induced diabetic rats (DR). Moreover, 2-AMPK activity, but not 1-AMPK activity, increased by 2-fold in hypothalamus of the DRs. Phosphorylation of hypothalamic acetyl CoA carboxylase (ACC), a key downstream enzyme of AMPK, also increased in the DRs and this caused a reduction in ACC activity. Insulin treatment completely reversed the diabetesinduced changes in the hypothalamic AMPK and ACC, suggesting that insulin deficiency was associated with the changes in hypothalamic AMPK and ACC. Inhibition of AMPK by an intracerebroventricular administration of AMPK inhibitor, compound C, attenuated the development of diabetic hyperphagia and reduced the blood glucose levels in DRs. CONCLUSION: We have demonstrated that hypothalamic AMPK activity increased in the DRs, and inhibition of hypothalamic AMPK activity attenuated the development of diabetic hyperphagia. These data indicate that the enhanced hypothalamic AMPK activity may contribute to the development of diabetic hyperphagia

  • Cite
    CITE
    export Copy
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Hypothalamic AMPK Activity in Diabetic Rats.
    Korean Diabetes J. 2004;28(6):468-477.   Published online December 1, 2004
    Close
Related articles
Namkoong C, Kim MS, Lee WJ, Jang PG, Han SM, Koh EH, Park JY, Lee KU. Hypothalamic AMPK Activity in Diabetic Rats.. Diabetes Metab J. 2004;28(6):468-477.
DOI: https://doi.org/.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP