Background The present study investigated the regulatory effects of N6-methyladenosine (m6A) methyltransferase like-3 (METTL3) in diabetes-induced testicular damage.
Methods In vivo diabetic mice and high glucose (HG) treated GC-1 spg cells were established. The mRNA and protein expressions were determined by real-time quantitative polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry staining. Levels of testosterone, blood glucose, cell viability, and apoptosis were detected by enzyme-linked immunosorbent assay, MTT, and flow cytometry, respectively. Molecular interactions were verified by RNA immunoprecipitation and RNA pull-down assay. Histopathological staining was performed to evaluate testicular injury.
Results METTL3 and long non-coding RNA taurine up-regulated 1 (lncRNA TUG1) were downregulated in testicular tissues of diabetic mice and HG-treated GC-1 spg cells. METTL3 overexpression could reduce the blood glucose level, oxidative stress and testicular damage but enhance testosterone secretion in diabetic mouse model and HG-stimulated GC-1 spg cells. Mechanically, METTL3-mediated m6A methylation enhanced the stability of TUG1, then stabilizing the clusterin mRNA via recruiting serine and arginine rich splicing factor 1. Moreover, inhibition of TUG1/clusterin signaling markedly reversed the protective impacts of METTL3 overexpression on HG-stimulated GC-1 spg cells.
Conclusion This study demonstrated that METTL3 ameliorated diabetes-induced testicular damage by upregulating the TUG1/clusterin signaling. These data further elucidate the potential regulatory mechanisms of m6A modification on diabetes-induced testicular injury.
Citations
Citations to this article as recorded by
Negative Regulation of LINC01013 by METTL3 and YTHDF2 Enhances the Osteogenic Differentiation of Senescent Pre‐Osteoblast Cells Induced by Hydrogen Peroxide Jiaxin Song, Yuejun Wang, Zhao Zhu, Wanqing Wang, Haoqing Yang, Zhaochen Shan Advanced Biology.2024;[Epub] CrossRef
Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1 Mohammed Ageeli Hakami Saudi Journal of Biological Sciences.2024; 31(5): 103976. CrossRef
BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage Yuehai Xiao, Zongjian Liang, Jun Qiao, Zhiqiang Zhu, Bei Liu, Yuan Tian Molecular Medicine.2024;[Epub] CrossRef
Roles of m6A modification in regulating PPER pathway in cadmium-induced pancreatic β cell death Yifei Sun, Rongxian Li, Wenhong Li, Nan Zhang, Guofen Liu, Bo Zhao, Zongqin Mei, Shiyan Gu, Zuoshun He Ecotoxicology and Environmental Safety.2024; 282: 116672. CrossRef
METTL14-Mediated m6A Modification of TUG1 Represses Ferroptosis in Alzheimer's Disease via Inhibiting GDF15 Ubiquitination Xunhu Gu, Yuanqing Song, Xu Liu, Zhijuan Cheng, Jun Min, Yangbo Zhang Frontiers in Bioscience-Landmark.2024;[Epub] CrossRef
Background Long non-coding RNAs (lncRNAs) have been illustrated to contribute to the development of gestational diabetes mellitus (GDM). In the present study, we aimed to elucidate how lncRNA taurine upregulated gene 1 (TUG1) influences insulin resistance (IR) in a high-fat diet (HFD)-induced mouse model of GDM.
Methods We initially developed a mouse model of HFD-induced GDM, from which islet tissues were collected for RNA and protein extraction. Interactions among lncRNA TUG1/microRNA (miR)-328-3p/sterol regulatory element binding protein 2 (SREBP-2) were assessed by dual-luciferase reporter assay. Fasting blood glucose (FBG), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), HOMA pancreatic β-cell function (HOMA-β), insulin sensitivity index for oral glucose tolerance tests (ISOGTT) and insulinogenic index (IGI) levels in mouse serum were measured through conducting gain- and loss-of-function experiments.
Results Abundant expression of miR-328 and deficient expression of lncRNA TUG1 and SREBP-2 were characterized in the islet tissues of mice with HFD-induced GDM. LncRNA TUG1 competitively bound to miR-328-3p, which specifically targeted SREBP-2. Either depletion of miR-328-3p or restoration of lncRNA TUG1 and SREBP-2 reduced the FBG, FINS, HOMA-β, and HOMA-IR levels while increasing ISOGTT and IGI levels, promoting the expression of the extracellular signal-regulated kinase (ERK) signaling pathway-related genes, and inhibiting apoptosis of islet cells in GDM mice. Upregulation miR-328-3p reversed the alleviative effects of SREBP-2 and lncRNA TUG1 on IR.
Conclusion Our study provides evidence that the lncRNA TUG1 may prevent IR following GDM through competitively binding to miR-328-3p and promoting the SREBP-2-mediated ERK signaling pathway inactivation.
Citations
Citations to this article as recorded by
Research Progress of Risk Factors Associated with Gestational Diabetes Mellitus Zi-Jun Lin, Lian-Ping He, Cui-Ping Li Endocrine, Metabolic & Immune Disorders - Drug Targets.2025; 25(2): 99. CrossRef
Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1 Mohammed Ageeli Hakami Saudi Journal of Biological Sciences.2024; 31(5): 103976. CrossRef
Expression and Regulatory Ability of Long Non-Coding RNADLX6 Antisense RNA 1 in Gestational Diabetes Mellitus Qiuhong Huang, Lichun Tang, Xiaohui Meng, Meiling Wen, Yin Qin, Jingjing Liu, Xuanxuan Luo, Rong Liang, Xia Dai Clinical and Experimental Obstetrics & Gynecology.2024;[Epub] CrossRef
Chemerin alleviates the placental oxidative stress and improves fetal overgrowth of gestational diabetes mellitus mice induced by high fat diet Xuan Zhou, Yi Jiang, Zizhuo Wang, Lijie Wei, Huiting Zhang, Chenyun Fang, Shenglan Zhu, Yuanyuan Du, Rui Su, Weikun Li, Zhenzhen He, Liangnan Zhang, Weidong Tan, Mengzhou He, Jun Yu, Shaoshuai Wang, Wencheng Ding, Ling Feng Molecular Medicine.2024;[Epub] CrossRef
Effect of Tinospora cordifolia on gestational diabetes mellitus and its complications Ritu Rani, Havagiray Chitme, Avinash Kumar Sharma Women & Health.2023; 63(5): 359. CrossRef
Therapeutic Effect of Tinospora cordifolia (Willd) Extracts on Letrozole-Induced Polycystic Ovarian Syndrome and its Complications in Murine Model Ritu Rani, Avinash Kumar Sharma, Havagiray R Chitme Clinical Medicine Insights: Endocrinology and Diabetes.2023;[Epub] CrossRef
The role of ncRNA regulatory mechanisms in diseases—case on gestational diabetes Dong Gao, Liping Ren, Yu-Duo Hao, Nalini Schaduangrat, Xiao-Wei Liu, Shi-Shi Yuan, Yu-He Yang, Yan Wang, Watshara Shoombuatong, Hui Ding Briefings in Bioinformatics.2023;[Epub] CrossRef
lncRNA
TUG1
as Potential Novel Biomarker for Prognosis of Cardiovascular Diseases
Habib Haybar, Narjes Sadat Sadati, Daryush Purrahman, Mohammad Reza Mahmoudian-Sani, Najmaldin Saki Epigenomics.2023; 15(23): 1273. CrossRef