Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
3 "Migration"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Basic Research
Article image
Glucagon-Like Peptide Receptor Agonist Inhibits Angiotensin II-Induced Proliferation and Migration in Vascular Smooth Muscle Cells and Ameliorates Phosphate-Induced Vascular Smooth Muscle Cells Calcification
Jinmi Lee, Seok-Woo Hong, Min-Jeong Kim, Sun Joon Moon, Hyemi Kwon, Se Eun Park, Eun-Jung Rhee, Won-Young Lee
Diabetes Metab J. 2024;48(1):83-96.   Published online January 3, 2024
DOI: https://doi.org/10.4093/dmj.2022.0363
  • 3,400 View
  • 236 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system.
Methods
To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide.
Results
Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs.
Conclusion
These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.

Citations

Citations to this article as recorded by  
  • Incretin Hormone Secretion in Women with Polycystic Ovary Syndrome: Roles of Obesity, Insulin Sensitivity and Treatment with Metformin and GLP-1s
    Andrea Etrusco, Mislav Mikuš, Antonio D’Amato, Fabio Barra, Petar Planinić, Trpimir Goluža, Giovanni Buzzaccarini, Jelena Marušić, Mara Tešanović, Antonio Simone Laganà
    Biomedicines.2024; 12(3): 653.     CrossRef
  • Cardiometabolic Crossroads: Obesity, Sleep-Disordered Breathing, and Epicardial Adipose Tissue in Heart Failure with Preserved Ejection Fraction – A Mini-Review
    Fulvio Cacciapuoti, Ciro Mauro, Valentina Capone, Angelo Sasso, Luca Gaetano Tarquinio, Federico Cacciapuoti
    Heart and Mind.2024;[Epub]     CrossRef
  • BRCC36 regulates β-catenin ubiquitination to alleviate vascular calcification in chronic kidney disease
    Yalan Li, Xiaoyue Chen, Yiqing Xiong, Xueqiang Xu, Caidie Xie, Min Min, Dongmei Liang, Cheng Chen, Huijuan Mao
    Journal of Translational Medicine.2024;[Epub]     CrossRef
Migration of Vascular Smooth Muscle Cells by High Glucose is Reactive Oxygen Dependent.
Yong Seong An, Ji Hae Kwon, Yang Ho Kang, In Ju Kim, Yong Ki Kim, Seok Man Son
Korean Diabetes J. 2008;32(3):185-195.   Published online June 1, 2008
DOI: https://doi.org/10.4093/kdj.2008.32.3.185
  • 2,098 View
  • 19 Download
AbstractAbstract PDF
BACKGROUND
Oxidative stress contributes to vascular diseases in patients with diabetes. As the mechanism of development and progression of diabetic vascular complications is poorly understood, this study was aimed to assess the potential role of hyperglycemia-induced oxidative stress and to determine whether the oxidative stress is a major factor in hyperglycemia-induced migration of vascular smooth muscle cells (VSMCs). METHODS: We treated primary cultured rat aortic smooth muscle cells for 72 hours with medium containing 5.5 mM D-glucose (normal glucose), 30 mM D-glucose (high glucose) or 5.5 mM D-glucose plus 24.5 mM mannitol (osmotic control). We measured the migration of VSMCs and superoxide production. Immunoblotting of PKC isozymes using phoshospecific antibodies was performed, and PKC activity was also measured. RESULTS: Migration of VSMCs incubated under high glucose condition were markedly increased compared to normal glucose condition. Treatment with diphenyleneiodonium (DPI, 10 micromol/L) and superoxide dismutase (SOD, 500 U/mL) significantly suppressed high glucose-induced migration of VSMCs. Superoxide production was significantly increased in high glucose condition and was markedly decreased after treatment with DPI and SOD. High glucose also markedly increased activity of PKC-delta isozyme. When VSMCs were treated with rottlerin or transfected with PKC-delta siRNA, nitro blue tetrazolium (NBT) staining and NAD(P)H oxidase activity were significantly attenuated in the high glucose-treated VSMCs. Furthermore, inhibition of PKC-delta markedly decreased VSMC migration by high glucose. CONCLUSION: These results suggest that high glucose-induced VSMC migration is dependent upon activation of PKC-delta, which may responsible for elevated intracellular ROS production in VSMCs, and this is mediated by NAD(P)H oxidase.
Effect of Transforming Growth Factor-Induced Gene Product, beta ig-h3 on Proliferation, Migration, and Adhesion of Aortic Smooth Muscle Cells Cultured in High Glucose.
Sung Woo Ha, Gui Hwa Jung, He Jin Yeo, Jong Sup Bae, Soon Hee Lee, Jung Guk Kim, Rang Woon Park, In San Kim, Bo Wan Kim
Korean Diabetes J. 2002;26(4):286-295.   Published online August 1, 2002
  • 1,011 View
  • 18 Download
AbstractAbstract PDF
BACKGROUND
Diabetes mellitus is associated with a substantial increase in the prevalence of atherosclerotic disease. There are many factors which are involved in development of these processes. Transforming growth factor (TGF-beta) is known to be an important factor in the pathogenesis of diabetic vascular complications. TGF-beta-induced gene-h3 (beta ig-h3) is an adhesive molecule whose expression is induced by TGF-beta. Considering that TGF-beta plays an important role in diabetic complications and that beta ig-h3 is induced by TGF-beta, we hypothesized that beta ig-h3 may also play a role in the development of diabetic angiopathy. Then, we examined the effects of beta ig-h3 on biologic function of vascular smooth muscle cells (VSMCs) and potential roles of beta ig-h3 in the pathognesis of diabetic angiopathy. METHODS: VSMCs were isolated from rat thoracic aorta. We conditioned cells with different concentration of TGF-beta or glucose. We measured TGF-beta and beta ig-h3 protein in cell supernatant by ELISA. We also examined whether TGF-beta involves in high glucose-induced beta ig-h3 expression. Finally, we did proliferation, migration, and adhesion assay to investigate biologic function of beta ig-h3 in VSMCs. RESULTS: Our results demonstrated that TGF-beta induced beta ig-h3 expression in VSMCs in dose dependent manners. High glucose induced TGF expression as well as beta ig-h3 protein. Finally, beta ig-h3 was found to support the proliferation, migration, and adhesion of rat VSMCs. CONCLUSION: These results suggest that high glucose-and TGF-beta-induced beta ig-h3 may play an important role in diabetic angiopathy by regulating proliferation, migration, and adhesion of VSMCs.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP