BACKGROUND NAD(P)H: quinone oxidoreductase 1 (NQO1), which is an obligate two-electron reductase that utilizes NAD(P)H as an electron donor and is involved in the protection against oxidative stress, is likely involved in beta-cell destruction. We evaluated the frequency of the NQO1 polymorphism and its association with blood glucose levels. METHODS: Genotypes were determined using a polymerase chain reaction restriction fragment length polymorphism-based assay in 56 patients and 48 healthy subjects. Fasting blood glucose, insulin, and lipid profiles were measured and homeostasis model assessment (HOMA)-insulin resistance (IR) was calculated from fasting glucose and insulin levels in the healthy subjects. RESULTS: The genotype frequencies of NQO1 polymorphism were C/C (56.7%), C/T (42.3%), and T/T (1.0%). There were no associations between the NQO1 polymorphism and body mass index, blood pressure, lipid profile, HbA1c, postprandial glucose, and HOMA-IR. However, NQO1 mutants (C/T and T/T) showed weak but significantly higher fasting blood glucose levels compared with wild type (C/C). CONCLUSION: Our data suggest that NQO1 609 C --> T polymorphism may be associated with glucose metabolism.
Citations
Citations to this article as recorded by
Association of Nuclear Factor‐Erythroid 2‐Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase‐1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients Angélica Saraí Jiménez-Osorio, Susana González-Reyes, Wylly Ramsés García-Niño, Hortensia Moreno-Macías, Martha Eunice Rodríguez-Arellano, Gilberto Vargas-Alarcón, Joaquín Zúñiga, Rodrigo Barquera, José Pedraza-Chaverri, Silvana Hrelia Oxidative Medicine and Cellular Longevity.2016;[Epub] CrossRef