Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
4 "Glycogen synthesis"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
The Role of Akt-1/PKBalpha on Insulin Action in 3T3-L1 Adipocyte.
Jung Min Lee, Hyun Shik Son, Hyuk Sang Kwon, Seung Ki Kwack, Seung Hyun Ko, Sang Ah Chang, Kun Ho Yoon, Bong Yun Cha, Kwang Woo Lee, Ho Young Son, Sung Koo Kang, Prem Sharma
Korean Diabetes J. 2002;26(4):274-285.   Published online August 1, 2002
  • 1,243 View
  • 20 Download
AbstractAbstract PDF
BACKGROUND
S: Akt/PKB as a serine/threonine kinase is stimulated by insulin and other growth factors. And insulin stimulates glucose uptake by promoting the translocation of glucose transporter 4 (GLUT4) to the cell membrane. But, it is not clear that Akt/PKB, a downstream target of PI 3-kinase, is involved in glucose uptake pathway. In this study, we investigated the role of Akt/PKB, especially Akt-1, on insulin action in 3T3-L1 adipocyte. METHODS: We made recombinant Ad5.Akt-1 vector by the insertion of Akt-1 gene to adenoviral vector. And then, we overexpressed Akt-1 proteins(wild type and kinase inactive type) in 3T3-L1 adipocytes by using a adenoviral transfection method. We observed the changes of glucose uptake, glycogen synthesis, activities of mitogen-activated protein kinase (MAPK, also called extracellular signal-regulated kinase), p70 ribosomal s6 protein kinase (p70s6k), and glycogen synthase kinase 3 (GSK3) according to Akt-1 activity and insulin treatment. RESULTS: First, overexpression of Akt-1 did not affect to glucose uptake, whether insulin stimulates or not. Second, overexpression of Akt-1 did not affect the phosphorylation of p44/42-MAPK, either. Third, the glycogen synthesis was increased by overexpression of Akt-1. CONCLUSION: Akt-1 activation is necessary for glycogen synthesis, but is not essential for glucose transport in 3T3-L1 adipocytes.
The Effects of Uncoupling Protein 3 Overexpression on Glucose Metabolism in OLETF Rats in Vivo and Cultured Skeletal Muscle Cells in Vitro.
Jeong Hee Han, Hye Seon Park, Jung Min Koh, Ha Young Kim, Ho Kyung Kang, In Kyu Lee, Joong Yeol Park, Sung Kwan Hong, Jae Dam Lee, Ki Up Lee
Korean Diabetes J. 2001;25(6):460-468.   Published online December 1, 2001
  • 1,305 View
  • 22 Download
AbstractAbstract PDF
BACKGROUND
UCP3 is a mitochondrial membrane protein expressed selectively in the skeletal muscle and brown adipose tissue. Since the skeletal muscle is the main organ determining insulin sensitivity in the body, it was hypothesized that UCP3 overexpression in skeletal muscle cells would improve glucose metabolism. METHODS: An adenovirus-UCP3 was produced by a recombinant DNA method. OLETF rats were divided into 2 groups. Four rats were injected with the adenovirus- UCP3 (UCP3 group) and others were injected with the adenovirus (control group) in the skeletal muscle. The UCP3 group was provided with the same quantity of food as that consumed by the control group on the previous day. Insulin sensitivity was evaluated by the euglycemic hyperinsulinemic clamp method. In a separate experiment, glucose transport and glycogen synthesis we evaluated in C2C12 cells transfected with ether an adenovirus or the adenovirus-UCP3. RESULTS: The insulin sensitivity improved significantly and the body weight decreased in the UCP3 group. The glucose transport and glycogen synthesis were higher in the UCP3-C2C12 skeletal muscle cells at the basal state. After insulin treatment, glucose transport and glycogen synthesis were also higher in the UCP3-C2C12 cells but the increments were reduced after treatment with wortmannin, a PI3K inhibitor. CONCLUSION: Insulin sensitivity was higher in the UCP3-overexpressed OLETF rats in the in vivo study. UCP3 transfection also increased glucose transport and glycogen synthesis in the cultured skeletal muscle cells by a PI3K dependent mechanism.
Effect of Overexpression of Gi Proteins on Insulin Actions in 3T3-L1 Adipocytes.
Hyun Shik Son, Bong Yun Cha, Sung Dae Moon, Jung Min Lee, Ok Ki Hong, Sang Ah Chang, Yu Bae Ahn, Kun Ho Yoon, Kwang Woo Lee, Ho Young Son, Sung Koo Kang
Korean Diabetes J. 2000;24(4):404-412.   Published online January 1, 2001
  • 1,211 View
  • 18 Download
AbstractAbstract PDF
BACKGROUND
It has been reported that G proteins are involved in biological actions of insulin. Especially, Gi protein is more associated with insulin actions than Gs proteins. Gi protein has at least three different subtypes of Gi 1, Gi 2 and Gi 3 protein. However, it is not certain which subtypes of Gi proteins are associated with biological actions of insulin. METHODS: To investigate which subtypes of Gi proteins are associated with insulin action, we overexpressed three different kinds of Gi protein, Gi 1, Gi 2 and Gi 3 protein, in 3T3-L1 adipocytes using DNA-polylysine-adenovirus complex transfection method. After incubating for 2 hours, 3T3-L1 adipocytes were treated with 100 nM insulin for the evaluation of biological actions of insulin. Moreover, to elucidate insulin stimulated insulin receptor autophosphorylation and IRS-1 phosphorylation, 3T3-L1 adipocytes were stimulated with 100 nM insulin for 10 minutes, homogenized and immunoprecipitated with anti-phosphotyrosine antibody. RESULTS: Transfection with Gi 2 gene resulted in increment in insulin-stimulated [3H]2-deoxyglucose (DOG) uptake without affecting basal 2-DOG uptake, but not with Gi 1 and Gi 3 gene transfection. There was unchanged glycogen synthesis rate in all three Gialphasubtypes. Insulin-induced increments of insulin receptor autophos phorylation and IRS-1 phosphorylation were found in Gi 2 protein overexpressed group, only. CONCLUSION: These results suggest that Gi 2 protein may be associated with regulation of biological actions of insulin.
Effect of Exercise Training on Insulin Sensitivity and Intracellular Glucose Metabolism in Skeletal Muscle of High Fat-fed Rats.
Chul Hee Kim, Joong Yeol Park, Sung Kwan Hong, Kyong Soo Park, Hong Kyu Lee, Ki Up Lee
Korean Diabetes J. 1998;22(2):231-242.   Published online January 1, 2001
  • 1,265 View
  • 18 Download
AbstractAbstract PDF
BACKGROUND
Insulin resistance is a major characteristic of non-insulin-dependent diabetes mellitus and obesity. Many studies have indicated that increased intake of fat are associated with obesity and insulin resistance. On the other hand, chronic exercise is known to improve insulin sensitivity. However, the mechanisms by which high fat diet induces insulin resistance and exercise trainmg improves insulin sensitivity are not established. This study was undertaken to examine the mechanisms by which high fat diet and exercise training affect the insulin sensitivity in the whole body and in skeletal muscles. METHODS: Male Sprague-Dawley rats were divided into three groups: high fat sedentary group, high fat exercise group, and control(low fat sedentary) group. High fat diet consists of 66.5% fat and 12.5% carbohydrate, and control(low fat) diet consists of 12 5% fat and 66.5% carbohydrate. Exercise training was performed by swimming three hours per day. After 3 weeks, animals underwent hyperinsulinemic euglycemic clamp study to measure whole body glucose metabolic fluxes. Glycogen synthase activity and glucose-6-phosphate (G-6-P) levels were measured in skeletal muscle at the end of the clamp study. RESULTS: In the high fat diet group, whole body glycolysis and glycogen synthesis were decreased. Exercise training reversed the insulin resistance induced by high fat diet by increasing both glycolysis and glycogen synthesis. Glycogen synthase activity in skeletal muscle was reduced in high fat diet group, and it was partially reversed by exercise training. G-6-P level in skeletal muscle was increased in high fat diet group, and it was further increased by exercise training. CONCLUSION: These results suggested that the insulin resistance in high fat diet-fed rats is due to the impairment in glucose metabolism at sites distal to G-6-P, i.e. glycolysis and glycogen synthesis. In contrast, the improvement in insulin sensitivity by exercise training in high fat-fed rats is primarily due to the increased glucose metabolic flux proximal to G-6-P, i.e. glucose transport and phosphorylation.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP