Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
4 "Duct cell"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Article
Differentiation of Pancreatic beta Cells from Human Pancreatic Duct Cells Derived from a Partial Pancreas Tissue.
Ki Ho Song, Myung Mee Kim, Min Kyung Lee, Gyeong Ryul Ryu, Seung Hyun Ko, Sung Dae Moon, Yu Bae Ahn, Kun Ho Yoon, Bong Yun Cha, Kwang Woo Lee, Ho Young Son, Sung Koo Kang, Hyung Min Chin
Korean Diabetes J. 2007;31(3):236-242.   Published online May 1, 2007
DOI: https://doi.org/10.4093/jkda.2007.31.3.236
  • 2,174 View
  • 23 Download
  • 1 Crossref
AbstractAbstract PDF
BACKGROUND
Despite a recent breakthrough in human islet transplantation for treating diabetes mellitus, the limited availability of insulin-producing tissue is still a major obstacle. This has led to a search for alternative sources of transplantable insulin-producing cells including pancreatic duct cells. We aimed to establish in vitro culture of pancreatic duct cells from a partial pancreas tissue in human, which could be harnessed to differentiate into pancreatic beta cells. METHODS: We isolated pancreatic duct cells from small pieces of pancreas tissue (1~3 g) derived from non-diabetic humans (n = 8) undergoing pancreatic surgery due to cancer. Pancreas tissue was finely minced after injection of collagenase P into the parenchyma. The mince was incubated in a shaking water bath at 37degrees C for 25 min and passed through a 150 micrometer mesh. The released cells were recovered, washed, and plated in a dish containing CMRL culture medium with serum. RESULTS: Isolated pancreatic cells grew in monolayer and became confluent in 1~2 wks showing typical epithelial cobblestone morphology. Immunochemistry demonstrated that ~90% of the cultured cells were cytokeratin7-positive duct cells. To induce beta cell differentiation, the cells were incubated in DMEM/F12 culture medium without serum. In addition, treatment with Matrigel overlay, exendin-4, cholera toxin or forskolin was done. Though beta cell differentiation was found by immunostaining and RT-PCR, the differentiation efficiency was very low. Over-expression of neurogenin-3 by recombinant adenovirus did not increase beta cell differentiation of the cultured duct cells significantly. CONCLUSION: We established in vitro culture of pancreatic duct cells from a partial pancreas tissue in human, which differentiate into pancreatic cells. However, a strategy to optimize beta cell differentiation in this model is needed.

Citations

Citations to this article as recorded by  
  • Transdifferentiation of Enteroendocrine K-cells into Insulin-expressing Cells
    Esder Lee, Jun Mo Yu, Min Kyung Lee, Gyeong Ryul Ryu, Seung-Hyun Ko, Yu-Bae Ahn, Sung-Dae Moon, Ki-Ho Song
    Korean Diabetes Journal.2009; 33(6): 475.     CrossRef
Review
The Roles of Clusterin on Morphogenesis of Beta Cells During Pancreas Regeneration.
Seok Woo Hong, KC Ranjan, Song Lee, Yong Jae Shin, Bon Hong Min, In Sun Park
Korean Diabetes J. 2007;31(1):1-8.   Published online January 1, 2007
DOI: https://doi.org/10.4093/jkda.2007.31.1.1
  • 2,210 View
  • 28 Download
  • 1 Crossref
AbstractAbstract PDF
Clusterin is a highly glycosylated heterodimeric glycoprotein that plays diverse biological roles in various organs. The secreted clusterin has been established as a major form of the protein that exerts diverse tissue effects. For instance, clusterin is known to act in cell protection through the actions of extra-cellular molecular chaperones. In the extracellular milieu, clusterin participates in specific interactions with a diverse array of native biological molecules including LRP-2 (Lipoprotein receptor-related protein 2, also known as gp330 or megalin), which is involved in ligand endocytosis at the surfaces of certain epithelia. Clusterin is expressed transiently in developing and differentiating endocrine pancreatic cells and might be involved in pancreas development. This transient expression of clusterin at specific time points of pancreas development and cell differentiation during pancreas regeneration implies that the protein is a regulatory factor for cytodifferentiation as well as for replication. A specific action of the clusterin in the reconstruction and remodeling of the endocrine pancreas has been demonstrated. It also strongly stimulates duct cell differentiation into insulin-secreting cells under in vitro culture conditions. Clusterin appears thus as a potent regulator of insulin cell morphogenesis.

Citations

Citations to this article as recorded by  
  • Effect of African Mango (Irvingia gabonesis, IGOB 131TM) Extract on Glucose Regulation in STZ-Induced Diabetes
    Yejin Ha, Minhee Lee, Han Ol Kwon, Yoo-Hyun Lee
    Journal of the Korean Society of Food Science and Nutrition.2015; 44(11): 1607.     CrossRef
Original Articles
Characterization of Preadipocyte factor-1 (Pref-1) Expressing Pancreatic Cells.
Marie Rhee, Sun Hee Suh, Youn Joo Yang, Ji Won Kim, Sung Yoon Jeon, Oak Kee Hong, Seung Hyun Ko, Yoon Hee Choi, Bong Yun Cha, Ho Yong Son, Kun Ho Yoon
Korean Diabetes J. 2005;29(6):507-516.   Published online November 1, 2005
  • 1,257 View
  • 22 Download
AbstractAbstract PDF
BACKGROUND
Preadipocyte factor-1/Delta-like 1(Pref-1/Dlk1) is a type I membrane protein that has six epidermal growth factor (EGF)-like repeats in its extracellular and a short cytoplasmic domain. It is widely expressed in embryonic tissues, whereas its expressions were limited in adult and postnatal stage. To characterize the Pref-1 expressing cells during pancreas development and regeneration after birth, we analyzed Pref-1 expression in embryonic and adult partial pancreatectomized rat pancreas, and primary cultured neonatal pig pancreatic cells. METHODS: Whole fetuses or pieces of rat pancreas were obtained at E20. 90% partial pancreatectomy (Px) and sham operation were done using 5 week-old Sprague-Dawley rats. Experimental animals were divided into 11 groups by time of killing after surgery; 0, 1, 3, 6 and 12 hours, 1, 2, 3, 5, 7, and 14 days. All tissues were immunostained with Pref-1 and analysed by reverse transcriptase (RT)-PCR. Porcine neonatal pancreas cell clusters (NPCCs) were prepared from neonatal pigs aged 1-2 days. Cells were harvested on day 0, 3, 4, 5, 6, and 7 after dispersion. All cells were immunostained with Pref-1 and other specific cell markers such as Pan-cytokeratin (Pan-CK), vimentin (VT) and islet hormones, and confirmed by Western blot, RT-PCR and fluorescence activated cell sorting (FACS) analysis. RESULTS: In the rat embryonic pancreas at E20, Pref-1 expression was restricted only in the small branching ductules. In adult rat pancreas, Pref-1 was not expressed at all. Whereas, Pref-1 transiently expressed in the small regenerating duct cells located in foci of regeneration in Px model, then completely disappeared at day 7. The Pref-1 mRNA measured by RT-PCR was peaked at day 3 after Px and then gradually disappeared. Pref-1 expression pattern was also reproduced in monolayer cultured NPCCs. In NPCCs, protein levels of Pref-1 were peaked at day 0 to day 4 then gradually disappeared until day 7 by western blot. Most of Pref-1 expressing cells were co-stained with cytokeratin. The proportion of Pref-1 expressing cells in dispersed NPCCs were counted and isolated by FACS at 3 days after culture were 25% and then decreased over time during 7 days culture period. CONCLUSIONS: Pref-1 expression was regained in adult pancreatic cells during regeneration in vivo and in vitro and Pref-1 might be a useful marker for the pancreatic protodifferentiated cells.
3-Dimensional Long Term Culture of Monolayer Cultured Dispersed Neonatal Porcine Pancreas Cells (NPCC).
Sun Hee Suh, Kun Ho Yoon, Hyuk Sang Kwon, Ok Ki Hong, Jung Min Lee, Ki Ho Song, Soon Jib Yoo, Hyun Sik Son, Moo Il Kang, Bong Yun Cha, Kwang Woo Lee, Ho Young Son, Sung Koo Kang
Korean Diabetes J. 2002;26(5):383-395.   Published online October 1, 2002
  • 1,097 View
  • 17 Download
AbstractAbstract PDF
BACKGROUND
We have reported porcine neonatal pancreas cell clusters (NPCCs) to be useful clinical alternative due to their growth potential and convenience. However, to apply the porcine NPCCs in human islet transplantation, there is a need to achieve in vitro maturation of porcine pancreas duct cells for the immediate cure of diabetes, and to escape hyperacute rejection. We have established a long-term 3D culture system of porcine pancreas duct cells for their in vitro induction in differentiated beta-cells. METHOD: For making NPCCs, pancreata from 1~3 days old pigs were minced, digested and cultured for 8 days. After 8 days, the cells were layered with Matrigel. After 50 days, the 3 dimensional cultures, the components of the reconstructed cell clusters were confirmed by three approaches: immunofluorescent staining, mea-surement of glucose stimulated insulin secretion and semiquantitative RT-PCR. RESULT: The monolayers of epithelial cells formed three-dimensional structures of cysts from which 50~200 micro meter diameter islet-like clusters of pancreas cells budded. The insulin and DNA contents, and the ratio of insulin/DNA, did not change significantly, even after 50 days of culturinge. The levels of insulin and galactosyl transferase mRNA showed a tendency to increase in the monolayer culture of the duct cells until day 8, after which the levels significantly decreased. However, the level of glucagon mRNA was maintained until day 50. Compared with their basal secretion at 5mM glucose, the cysts/cultivated porcine islet buds exposed to stimulatory 20mM glucose did not show difference in insulin secretion. CONCLUSION: We have shown the expansion of dispersed porcine neonatal pancreas cells in vitro, and the reconstruction of a three-dimensional structure, following Matrigel overlaying, but were unable to observe the transition of duct cells to beta cells, as observed in human duct cells. Further studies will be required to elucidate this difference.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP