Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
298 "Diabetes Mellitus, Type 2"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Drug/Regimen
Article image
Study Design and Protocol for a Randomized Controlled Trial of Enavogliflozin to Evaluate Cardiorenal Outcomes in Type 2 Diabetes (ENVELOP)
Nam Hoon Kim, Soo Lim, In-Kyung Jeong, Eun-Jung Rhee, Jun Sung Moon, Ohk-Hyun Ryu, Hyuk-Sang Kwon, Jong Chul Won, Sang Soo Kim, Sang Yong Kim, Bon Jeong Ku, Heung Yong Jin, Sin Gon Kim, Bong-Soo Cha, on Behalf of Investigators of ENVELOP Study
Received May 9, 2024  Accepted August 14, 2024  Published online January 6, 2025  
DOI: https://doi.org/10.4093/dmj.2024.0238    [Epub ahead of print]
  • 291 View
  • 39 Download
AbstractAbstract PDF
Background
The novel sodium-glucose cotransporter-2 (SGLT2) inhibitor enavogliflozin effectively lowers glycosylated hemoglobin levels and body weights without the increased risk of serious adverse events; however, the long-term clinical benefits of enavogliflozin in terms of cardiovascular and renal outcomes have not been investigated.
Methods
This study is an investigator-initiated, multicenter, randomized, pragmatic, open-label, active-controlled, non-inferiority trial. Eligible participants are adults (aged ≥19 years) with type 2 diabetes mellitus (T2DM) who have a history of, or are at risk of, cardiovascular disease. A total of 2,862 participants will be randomly assigned to receive either enavogliflozin or other SGLT2 inhibitors with proven cardiorenal benefits, such as dapagliflozin or empagliflozin. The primary endpoint is the time to the first occurrence of a composite of major adverse cardiovascular or renal events (Clinical Research Information Service registration number: KCT0009243).
Conclusion
This trial will determine whether enavogliflozin is non-inferior to dapagliflozin or empagliflozin in terms of cardiorenal outcomes in patients with T2DM and cardiovascular risk factors. This study will elucidate the role of enavogliflozin in preventing vascular complications in patients with T2DM.
Sulwon Lecture 2024
Basic and Translational Research
Article image
Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System
Il Rae Park, Yong Geun Chung, Kyu Chang Won
Diabetes Metab J. 2025;49(1):1-12.   Published online January 1, 2025
DOI: https://doi.org/10.4093/dmj.2024.0796
  • 532 View
  • 52 Download
AbstractAbstract PDFPubReader   ePub   
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
Original Article
Genetics
Article image
Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian Gong, Hong Lian, Yating Li, Xiaoling Cai, Wei Liu, Yingying Luo, Meng Li, Si-min Zhang, Rui Zhang, Lingli Zhou, Yu Zhu, Qian Ren, Xiuying Zhang, Jing Chen, Jing Wu, Xianghai Zhou, Xirui Wang, Xueyao Han, Linong Ji
Received March 20, 2024  Accepted July 24, 2024  Published online November 13, 2024  
DOI: https://doi.org/10.4093/dmj.2024.0159    [Epub ahead of print]
  • 508 View
  • 32 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
Review
Guideline/Fact Sheet
Article image
Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun Bae, Eugene Han, Hye Won Lee, Cheol-Young Park, Choon Hee Chung, Dae Ho Lee, Eun-Hee Cho, Eun-Jung Rhee, Ji Hee Yu, Ji Hyun Park, Ji-Cheol Bae, Jung Hwan Park, Kyung Mook Choi, Kyung-Soo Kim, Mi Hae Seo, Minyoung Lee, Nan-Hee Kim, So Hun Kim, Won-Young Lee, Woo Je Lee, Yeon-Kyung Choi, Yong-ho Lee, You-Cheol Hwang, Young Sang Lyu, Byung-Wan Lee, Bong-Soo Cha, on Behalf of the Fatty Liver Research Group of the Korean Diabetes Association
Diabetes Metab J. 2024;48(6):1015-1028.   Published online November 1, 2024
DOI: https://doi.org/10.4093/dmj.2024.0541
  • 1,627 View
  • 240 Download
AbstractAbstract PDFPubReader   ePub   
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
Original Article
Pharmacotherapy
Article image
Use of Glucagon-Like Peptide-1 Receptor Agonists Does Not Increase the Risk of Cancer in Patients with Type 2 Diabetes Mellitus
Mijin Kim, Seung Chan Kim, Jinmi Kim, Bo Hyun Kim
Diabetes Metab J. 2025;49(1):49-59.   Published online October 24, 2024
DOI: https://doi.org/10.4093/dmj.2024.0105
  • 958 View
  • 95 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used for the treatment of type 2 diabetes mellitus (T2DM) given their extra-pancreatic effects. However, there are concerns about carcinogenesis in the pancreas and thyroid gland. We aimed to evaluate the site-specific incidence of cancer in patients with T2DM-treated GLP-1 RAs using a nationwide cohort.
Methods
This study included data obtained from the Korean National Health Insurance Service (between 2004 and 2021). The primary outcome was newly diagnosed cancer, and the median follow-up duration for all participants was 8 years.
Results
After propensity score matching, 7,827 participants were analyzed; 2,609 individuals each were included in the GLP-1 RA, diabetes mellitus (DM) control, and non-DM control groups. The incidence rate ratio (IRR) of subsequent cancer in patients with T2DM was 1.73, which was higher than that of individuals without DM, and it increased in both men and women. Analysis of patients with T2DM showed no increased cancer risk associated with the use of GLP-1 RA, and similar results were observed in both men and women. The IRRs of pancreatic cancer (0.74), thyroid cancer (1.32), and medullary thyroid cancer (0.34) did not significantly increase in the GLP-1 RA group compared with those in the DM control group.
Conclusion
There was a 73% higher risk of cancer in patients with T2DM compared with the general population. However, among patients with T2DM, there was no association between the use of GLP-1 RAs and new-onset cancers, including pancreatic and medullary thyroid cancers.
Reviews
Drug/Regimen
Article image
Benefit and Safety of Sodium-Glucose Co-Transporter 2 Inhibitors in Older Patients with Type 2 Diabetes Mellitus
Ja Young Jeon, Dae Jung Kim
Diabetes Metab J. 2024;48(5):837-846.   Published online September 1, 2024
DOI: https://doi.org/10.4093/dmj.2024.0317
  • 2,973 View
  • 423 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFPubReader   ePub   
People with type 2 diabetes mellitus (T2DM) are at higher risk of developing cardiovascular disease, heart failure, chronic kidney disease, and premature death than people without diabetes. Therefore, treatment of diabetes aims to reduce these complications. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown beneficial effects on cardiorenal and metabolic health beyond glucose control, making them a promising class of drugs for achieving the ultimate goals of diabetes treatment. However, despite their proven benefits, the use of SGLT2 inhibitors in eligible patients with T2DM remains suboptimal due to reports of adverse events. The use of SGLT2 inhibitors is particularly limited in older patients with T2DM because of the lack of treatment experience and insufficient long-term safety data. This article comprehensively reviews the risk-benefit profile of SGLT2 inhibitors in older patients with T2DM, drawing on data from prospective randomized controlled trials of cardiorenal outcomes, original studies, subgroup analyses across different age groups, and observational cohort studies.

Citations

Citations to this article as recorded by  
  • Trends in prescribing sodium‐glucose cotransporter 2 inhibitors for individuals with type 2 diabetes with and without cardiovascular‐renal disease in South Korea, 2015–2021
    Kyoung Hwa Ha, Soyoung Shin, EunJi Na, Dae Jung Kim
    Journal of Diabetes Investigation.2024;[Epub]     CrossRef
Cardiovascular Risk/Epidemiology
Article image
Artificial Light at Night and Type 2 Diabetes Mellitus
Jong-Ha Baek, Yong Zhu, Chandra L. Jackson, Yong-Moon Mark Park
Diabetes Metab J. 2024;48(5):847-863.   Published online September 1, 2024
DOI: https://doi.org/10.4093/dmj.2024.0237
  • 3,907 View
  • 285 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDFPubReader   ePub   
The widespread and pervasive use of artificial light at night (ALAN) in our modern 24-hour society has emerged as a substantial disruptor of natural circadian rhythms, potentially leading to a rise in unhealthy lifestyle-related behaviors (e.g., poor sleep; shift work). This phenomenon has been associated with an increased risk of type 2 diabetes mellitus (T2DM), which is a pressing global public health concern. However, to date, reviews summarizing associations between ALAN and T2DM have primarily focused on the limited characteristics of exposure (e.g., intensity) to ALAN. This literature review extends beyond prior reviews by consolidating recent studies from 2000 to 2024 regarding associations between both indoor and outdoor ALAN exposure and the incidence or prevalence of T2DM. We also described potential biological mechanisms through which ALAN modulates glucose metabolism. Furthermore, we outlined knowledge gaps and investigated how various ALAN characteristics beyond only light intensity (including light type, timing, duration, wavelength, and individual sensitivity) influence T2DM risk. Recognizing the detrimental impact of ALAN on sleep health and the behavioral correlates of physical activity and dietary patterns, we additionally summarized studies investigating the potential mediating role of each component in the relationship between ALAN and glucose metabolism. Lastly, we proposed implications of chronotherapies and chrononutrition for diabetes management in the context of ALAN exposure.

Citations

Citations to this article as recorded by  
  • Impact of bedroom light exposure on glucose metabolic markers and the role of circadian-dependent meal timing: A population-based cross-sectional study
    Qi Li, Yu-xiang Xu, Xiu-zhen Lu, Yu-ting Shen, Yu-hui Wan, Pu-yu Su, Fang-biao Tao, Xin Chen, Ying Sun
    Ecotoxicology and Environmental Safety.2025; 290: 117589.     CrossRef
  • Circadian Deregulation: Back Facing the Sun Toward Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Development
    Mariana Verdelho Machado
    Nutrients.2024; 16(24): 4294.     CrossRef
Original Article
Metabolic Risk/Epidemiology
Article image
Association of Uterine Leiomyoma with Type 2 Diabetes Mellitus in Young Women: A Population-Based Cohort Study
Ji-Hee Sung, Kyung-Soo Kim, Kyungdo Han, Cheol-Young Park
Diabetes Metab J. 2024;48(6):1105-1113.   Published online August 19, 2024
DOI: https://doi.org/10.4093/dmj.2023.0444
  • 1,267 View
  • 140 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
We investigated the association between uterine leiomyoma (UL) and incident type 2 diabetes mellitus (T2DM) in young women.
Methods
A nationwide population-based cohort study of 2,541,550 women aged between 20 and 40 years was performed using the National Health Information Database. Cox proportional hazards models were used to analyze the risk of incident T2DM according to the presence of UL and myomectomy.
Results
The mean age was 29.70 years, and mean body mass index was 21.31 kg/m2. Among 2,541,550 participants, 18,375 (0.72%) women had UL. During a median 7.45 years of follow-up, 23,829 women (0.94%) were diagnosed with T2DM. The incidence of T2DM in women with UL (1.805/1,000 person-years) was higher than in those without UL (1.289/1,000 person-years). Compared with women without UL, women with UL had a higher risk of incident T2DM (hazard ratio, 1.216; 95% confidence interval [CI], 1.071 to 1.382). Women with UL who did not undergo myomectomy had a 1.505 times (95% CI, 1.297 to 1.748) higher risk for incident T2DM than women without UL. However, women with UL who underwent myomectomy did not have increased risk for incident T2DM.
Conclusion
Young women with UL were associated with a high risk of incident T2DM. In addition, myomectomy seemed to attenuate the risk for incident T2DM in young women with UL.
Review
Others
Article image
Holistic and Personalized Strategies for Managing in Elderly Type 2 Diabetes Patients
Jae-Seung Yun, Kyuho Kim, Yu-Bae Ahn, Kyungdo Han, Seung-Hyun Ko
Diabetes Metab J. 2024;48(4):531-545.   Published online July 26, 2024
DOI: https://doi.org/10.4093/dmj.2024.0310
  • 3,882 View
  • 305 Download
  • 1 Web of Science
AbstractAbstract PDFPubReader   ePub   
Due to increased life expectancy and lifestyle changes, the prevalence of diabetes among the elderly in Korea is continuously rising, as is the associated public health burden. Diabetes management in elderly patients is complicated by age-related physiological changes, sarcopenia characterized by loss of muscle mass and function, comorbidities, and varying levels of functional, cognitive, and mobility abilities that lead to frailty. Moreover, elderly patients with diabetes frequently face multiple chronic conditions that elevate their risk of cardiovascular diseases, cancer, and mortality; they are also prone to complications such as hyperglycemic hyperosmolar state, diabetic ketoacidosis, and severe hypoglycemia. This review examines the characteristics of and management approaches for diabetes in the elderly, and advocates for a comprehensive yet personalized strategy.
Original Articles
Complications
Article image
Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus
Inha Jung, Seungyoon Nam, Da Young Lee, So Young Park, Ji Hee Yu, Ji A Seo, Dae Ho Lee, Nan Hee Kim
Diabetes Metab J. 2024;48(6):1126-1134.   Published online July 1, 2024
DOI: https://doi.org/10.4093/dmj.2023.0377
  • 1,979 View
  • 130 Download
  • 1 Web of Science
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.
Methods
We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).
Results
Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.
Conclusion
Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.
Pathophysiology
Article image
Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus
Ji Yoon Kim, Jiyoon Lee, Sin Gon Kim, Nam Hoon Kim
Diabetes Metab J. 2024;48(6):1135-1146.   Published online June 17, 2024
DOI: https://doi.org/10.4093/dmj.2023.0359
  • 2,092 View
  • 139 Download
  • 1 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM.
Methods
In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed.
Results
IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%–<9%, 7%–<8%, 6%–<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c.
Conclusion
β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.

Citations

Citations to this article as recorded by  
  • The Importance of Treating Hyperglycemia in β-Cell Dysfunction of Type 2 Diabetes Mellitus
    Arim Choi, Kyung-Soo Kim
    Diabetes & Metabolism Journal.2024; 48(6): 1056.     CrossRef
Others
Article image
Serum Magnesium Levels Are Negatively Associated with Obesity and Abdominal Obesity in Type 2 Diabetes Mellitus: A Real-World Study
Man-Rong Xu, Ai-Ping Wang, Yu-Jie Wang, Jun-Xi Lu, Li Shen, Lian-Xi Li
Diabetes Metab J. 2024;48(6):1147-1159.   Published online May 29, 2024
DOI: https://doi.org/10.4093/dmj.2023.0401
  • 2,329 View
  • 167 Download
  • 1 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
There remains controversy over the relationship between serum magnesium levels and obesity in type 2 diabetes mellitus (T2DM). Therefore, the aim of this study was to assess whether there is any association of serum magnesium levels with obesity and abdominal obesity in T2DM.
Methods
This cross-sectional, real-world study was conducted in 8,010 patients with T2DM, which were stratified into quintiles according to serum magnesium levels. The clinical characteristics and the prevalence of obesity and abdominal obesity were compared across serum magnesium quintiles in T2DM. Regression analyses were used to evaluate the relationship of serum magnesium with obesity and abdominal obesity in T2DM (clinical trial registration number: ChiCTR1800015893).
Results
After adjustment for age, sex, and duration of diabetes, the prevalence of obesity and abdominal obesity was significantly declined across magnesium quintiles (obesity: 51.3%, 50.8%, 48.9%, 45.3%, and 43.8%, respectively, P<0.001 for trend; abdominal obesity: 71.5%, 70.5%, 68.2%, 66.4%, and 64.5%, respectively, P=0.001 for trend). After controlling for confounders, there were clearly negative associations of serum magnesium levels and quintiles with obesity and abdominal obesity in T2DM. Moreover, C-reactive protein partly mediates the effect of serum magnesium on obesity and abdominal obesity (P=0.016 and P=0.004, respectively).
Conclusion
The significantly negative relationship between serum magnesium and the risk of obesity and abdominal obesity was observed in T2DM. Furthermore, the independently negative association of serum magnesium with obesity may be explained by its anti-inflammatory functions. Serum magnesium levels may be applied to assess the risk of obesity and abdominal obesity in T2DM.

Citations

Citations to this article as recorded by  
  • Magnesium Matters: A Comprehensive Review of Its Vital Role in Health and Diseases
    Ghizal Fatima, Andrej Dzupina, Hekmat B Alhmadi, Aminat Magomedova, Zainab Siddiqui, Ammar Mehdi, Najah Hadi
    Cureus.2024;[Epub]     CrossRef
Basic Research
Article image
Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes
Junfei Gu, Jiajia Jin, Xiaoyu Ren, Xinjie Zhang, Jiaxuan Li, Xiaowei Wang, Shucui Zhang, Xianlun Yin, Qunye Zhang, Zhe Wang
Diabetes Metab J. 2024;48(5):885-900.   Published online May 29, 2024
DOI: https://doi.org/10.4093/dmj.2023.0278
  • 3,407 View
  • 254 Download
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats.
Methods
T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies.
Results
Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk.
Conclusion
BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.
Metabolic Risk/Epidemiology
Article image
Association of Body Composition Changes with the Development of Diabetes Mellitus: A Nation-Wide Population Study
Hyung Jun Kim, Hyung-Woo Lee, Min-Kyoung Kang, Gwang Hyun Leem, Min-Ho Kim, Tae-Jin Song
Diabetes Metab J. 2024;48(6):1093-1104.   Published online May 21, 2024
DOI: https://doi.org/10.4093/dmj.2023.0243
  • 2,200 View
  • 160 Download
  • 1 Crossref
AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background
We investigated the association between body composition changes and new-onset diabetes mellitus (DM) development according to the body mass index (BMI) in a longitudinal setting in the general Korean population.
Methods
From 2010 to 2011 (1st) and 2012 to 2013 (2nd), we included 1,607,508 stratified random sample participants without DM from the National Health Insurance Service-Health Screening dataset of Korean. The predicted appendicular skeletal muscle mass index (pASMMI), body fat mass index (pBFMI), and lean body mass index (pLBMI) were calculated using pre-validated anthropometric prediction equations. A prediction equation was constructed by combining age, weight, height, waist circumference, serum creatinine levels, alcohol consumption status, physical activity, and smoking history as variables affecting body composition.
Results
Decreased pASMMI (men: hazard ratio [HR], 0.866; 95% confidence interval [CI], 0.830 to 0.903; P<0.001; women: HR, 0.748; 95% CI, 0.635 to 0.881; P<0.001), decreased pLBMI (men: HR, 0.931; 95% CI, 0.912 to 0.952; P<0.001; women: HR, 0.906; 95% CI, 0.856 to 0.959; P=0.007), and increased pBFMI (men: HR, 1.073; 95% CI, 1.050 to 1.096; P<0.001; women: HR, 1.114; 95% CI, 1.047 to 1.186; P=0.007) correlated with the development of new-onset DM. Notably, only in the overweight and obese BMI categories, decreases in pASMMI and pLBMI and increases in pBFMI associated with new-onset DM, regardless of gender.
Conclusion
Decreased pASMMI and pLBMI, and increased pBFMI with excess fat accumulation may enhance the risk of newonset DM. Therefore, appropriate changes in body composition can help prevent new-onset DM.

Citations

Citations to this article as recorded by  
  • Inhibition of CILP2 Improves Glucose Metabolism and Mitochondrial Dysfunction in Sarcopenia via the Wnt Signalling Pathway
    Zhibo Deng, Chao Song, Long Chen, Rongsheng Zhang, Linhai Yang, Peng Zhang, Yu Xiu, Yibin Su, Fenqi Luo, Jun Luo, Hanhao Dai, Jie Xu
    Journal of Cachexia, Sarcopenia and Muscle.2024; 15(6): 2544.     CrossRef
Complications
Article image
Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning
Chuan Yun, Fangli Tang, Zhenxiu Gao, Wenjun Wang, Fang Bai, Joshua D. Miller, Huanhuan Liu, Yaujiunn Lee, Qingqing Lou
Diabetes Metab J. 2024;48(4):771-779.   Published online April 30, 2024
DOI: https://doi.org/10.4093/dmj.2023.0033
  • 2,640 View
  • 251 Download
  • 1 Crossref
AbstractAbstract PDFPubReader   ePub   
Background
This study aimed to develop a diabetic kidney disease (DKD) prediction model using long short term memory (LSTM) neural network and evaluate its performance using accuracy, precision, recall, and area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
Methods
The study identified DKD risk factors through literature review and physician focus group, and collected 7 years of data from 6,040 type 2 diabetes mellitus patients based on the risk factors. Pytorch was used to build the LSTM neural network, with 70% of the data used for training and the other 30% for testing. Three models were established to examine the impact of glycosylated hemoglobin (HbA1c), systolic blood pressure (SBP), and pulse pressure (PP) variabilities on the model’s performance.
Results
The developed model achieved an accuracy of 83% and an AUC of 0.83. When the risk factor of HbA1c variability, SBP variability, or PP variability was removed one by one, the accuracy of each model was significantly lower than that of the optimal model, with an accuracy of 78% (P<0.001), 79% (P<0.001), and 81% (P<0.001), respectively. The AUC of ROC was also significantly lower for each model, with values of 0.72 (P<0.001), 0.75 (P<0.001), and 0.77 (P<0.05).
Conclusion
The developed DKD risk predictive model using LSTM neural networks demonstrated high accuracy and AUC value. When HbA1c, SBP, and PP variabilities were added to the model as featured characteristics, the model’s performance was greatly improved.

Citations

Citations to this article as recorded by  
  • Trends and analysis of risk factor differences in the global burden of chronic kidney disease due to type 2 diabetes from 1990 to 2021: A population‐based study
    Yifei Wang, Ting Lin, Jiale Lu, Wenfang He, Hongbo Chen, Tiancai Wen, Juan Jin, Qiang He
    Diabetes, Obesity and Metabolism.2025;[Epub]     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP