Kyuho Kim, Bongseong Kim, Kyuna Lee, Yu-Bae Ahn, Seung-Hyun Ko, Sung Hee Choi, Kyungdo Han, Jae-Seung Yun, on Behalf of the Committee of Public Relation of the Korean Diabetes Association
Diabetes Metab J. 2025;49(2):183-193. Published online March 1, 2025
Background Diabetes in older adults is becoming a significant public burden to South Korea. However, a comprehensive understanding of epidemiologic trends and the detailed clinical characteristics of older adults with diabetes is lacking. Therefore, we evaluated epidemiologic trends and the metabolic and lifestyle characteristics of diabetes in Korean older adults.
Methods We analyzed data from the Korea National Health and Nutrition Examination Survey to assess diabetes prevalence according to diabetes duration and lifestyle behaviors. In addition, we drew upon the National Health Information Database of the National Health Insurance System to assess physical activity levels, antidiabetic medication use, polypharmacy, medication adherence, and major comorbidities.
Results The absolute number of newly diagnosed cases of diabetes among older adults doubled over the past decade. Management rates of metabolic indicators were higher in older adults with diabetes compared to those without diabetes. The proportion of older adults with diabetes meeting the minimum recommended physical activity increased over the years. Compared to 10 years before, the use of dipeptidyl peptidase-4 inhibitor or sodium-glucose cotransporter-2 inhibitor had increased, as had comorbidities such as dyslipidemia, dementia, cancer, heart failure, atrial fibrillation, and chronic kidney disease. Initial medication adherence was significantly lower in those with end-stage kidney disease or dementia, insulin use, high-risk alcohol use, and living alone. Continuing insulin use 1 year after diagnosis of diabetes was significantly higher in those who initiated insulin therapy at diagnosis, had retinopathy, were on triple antidiabetic medications, and had a history of cancer.
Conclusion Comprehensive management of metabolic indicators and physical activity is essential for older adults with diabetes. Improvements in prescribing guidelines, personalized management of age-related comorbidities, and individualized approaches that consider the heterogeneous nature of older adults with diabetes are desirable. Further research, such as high-quality cohort and intervention studies specific to older adults, is needed to establish evidence-based management for older adults with diabetes.
Background Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
Background Most studies focus solely on the relationship between parity and type 2 diabetes mellitus (T2DM) risk, providing limited insights into other contributing or protective factors. This study aims to explore the complex relationship between parity and T2DM risk, considering additional factors such as obesity, race, and body composition.
Methods This prospective cohort study used data from 242,159 women aged 40 to 69 from the UK Biobank, none of whom had T2DM at baseline. Multivariable Cox proportional hazard models were applied to assess the association between parity and T2DM. Subgroup analyses were performed based on body mass index (BMI), waist circumference (WC), and race.
Results The hazard ratio for T2DM per additional child was 1.16 (95% confidence interval, 1.13 to 1.16). Subgroup analysis revealed that Asian women and those with obesity or abdominal obesity had a higher risk of T2DM associated with multiparity. No increased risk was observed in women with normal BMI or WC. Mediation analysis showed that WC and BMI significantly mediated the parity-T2DM relationship, accounting for 49% and 38% of the effect, respectively.
Conclusion There is a clear positive association between multiparity and T2DM risk, particularly in Asian women and those with obesity. Maintaining normal BMI and WC appears to mitigate this risk, highlighting the importance of weight management for women at higher parity levels. These findings offer crucial insights for public health interventions aimed at reducing T2DM risk among women.
Jiaheng Chen, Yu Ting Li, Zimin Niu, Zhanpeng He, Yao Jie Xie, Jose Hernandez, Wenyong Huang, Harry H.X. Wang, on Behalf of the Guangzhou Diabetic Eye Study Group
Diabetes Metab J. 2025;49(2):298-310. Published online February 4, 2025
Background Diabetic macrovascular and microvascular complications often coexist and may share similar risk factors and pathological pathways. We aimed to investigate whether 10-year atherosclerotic cardiovascular disease (ASCVD) risk, which is commonly assessed in diabetes management, can predict incident diabetic nephropathy (DN) and retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM).
Methods This prospective cohort study enrolled 2,891 patients with clinically diagnosed T2DM who were free of ASCVD, nephropathy, or retinopathy at baseline in the Guangzhou (2017–2022) and Shaoguan (2019–2021) Diabetic Eye Study in southern China. The 10-year ASCVD risk was calculated by the Prediction for ASCVD Risk in China (China-PAR) equations. Multivariable- adjusted Cox proportional hazard models were developed to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The area under the receiver operating characteristic curve (AUC) was used to evaluate predictive capability.
Results During follow-up, a total of 171 cases of DN and 532 cases of DR were documented. Each 1% increment in 10-year ASCVD risk was associated with increased risk of DN (pooled HR, 1.122; 95% CI, 1.094 to 1.150) but not DR (pooled HR, 0.996; 95% CI, 0.979 to 1.013). The model demonstrated acceptable performance in predicting new-onset DN (pooled AUC, 0.670; 95% CI, 0.628 to 0.715). These results were consistent across cohorts and subgroups, with the association appearing to be more pronounced in women.
Conclusion Ten-year ASCVD risk predicts incident DN but not DR in our study population with T2DM. Regular monitoring of ASCVD risk in routine diabetes practice may add to the ability to enhance population-based prevention for both macrovascular and microvascular diseases, particularly among women.
Citations
Citations to this article as recorded by
Investigation of the Potential Association Between Atherosclerotic Cardiovascular Disease Risk Score and Diabetic Retinopathy in Patients with Type 2 Diabetes: A Cross-Sectional Study Chrysa Agapitou, Theodoros N. Sergentanis, Effie G. Papageorgiou, Panagiotis Theodossiadis, Ignatios Ikonomidis, Vaia Lambadiari, Irini Chatziralli Biomedicines.2025; 13(3): 633. CrossRef
Background Diabetic kidney disease (DKD) is recognized as a significant complication of diabetes mellitus and categorized into glomerular DKDs and tubular DKDs, each governed by distinct pathological mechanisms and biomarkers.
Methods Through the identification of common features observed in glomerular and tubular lesions in DKD, numerous differentially expressed gene were identified by the machine learning, single-cell transcriptome and mendelian randomization.
Results The diagnostic markers versican (VCAN) was identified, offering supplementary options for clinical diagnosis. VCAN significantly highly expressed in glomerular parietal epithelial cell and proximal convoluted tubular cell. It was mainly involved in the up-regulation of immune genes and infiltration of immune cells like mast cell. Mendelian randomization analysis confirmed that serum VCAN protein levels were a risky factor for DKD, while there was no reverse association. It exhibited the good diagnostic potential for estimated glomerular filtration rate and proteinuria in DKD.
Conclusion VCAN showed the prospects into DKD pathology and clinical indicator.
Nam Hoon Kim, Soo Lim, In-Kyung Jeong, Eun-Jung Rhee, Jun Sung Moon, Ohk-Hyun Ryu, Hyuk-Sang Kwon, Jong Chul Won, Sang Soo Kim, Sang Yong Kim, Bon Jeong Ku, Heung Yong Jin, Sin Gon Kim, Bong-Soo Cha, on Behalf of Investigators of ENVELOP Study
Diabetes Metab J. 2025;49(2):225-234. Published online January 6, 2025
Background The novel sodium-glucose cotransporter-2 (SGLT2) inhibitor enavogliflozin effectively lowers glycosylated hemoglobin levels and body weights without the increased risk of serious adverse events; however, the long-term clinical benefits of enavogliflozin in terms of cardiovascular and renal outcomes have not been investigated.
Methods This study is an investigator-initiated, multicenter, randomized, pragmatic, open-label, active-controlled, non-inferiority trial. Eligible participants are adults (aged ≥19 years) with type 2 diabetes mellitus (T2DM) who have a history of, or are at risk of, cardiovascular disease. A total of 2,862 participants will be randomly assigned to receive either enavogliflozin or other SGLT2 inhibitors with proven cardiorenal benefits, such as dapagliflozin or empagliflozin. The primary endpoint is the time to the first occurrence of a composite of major adverse cardiovascular or renal events (Clinical Research Information Service registration number: KCT0009243).
Conclusion This trial will determine whether enavogliflozin is non-inferior to dapagliflozin or empagliflozin in terms of cardiorenal outcomes in patients with T2DM and cardiovascular risk factors. This study will elucidate the role of enavogliflozin in preventing vascular complications in patients with T2DM.
The Korean National Health Information Database (NHID), which contains nationwide real-world claims data including sociodemographic data, health care utilization data, health screening data, and healthcare provider information, is a powerful resource to test various hypotheses. It is also longitudinal in nature due to the recommended health checkup every 2 years and is appropriate for long-term follow-up study as well as evaluating the relationships between health outcomes and changes in parameters such as lifestyle factors, anthropometric measurements, and laboratory results. However, because these data are not collected for research purposes, precise operational definitions of diseases are required to facilitate big data analysis using the Korean NHID. In this review, we describe the characteristics of the Korean NHID, operational definitions of diseases used for research related to diabetes, and introduce representative research for diabetes-related diseases using the Korean NHID.
Citations
Citations to this article as recorded by
Prevalence, Incidence, and Metabolic Characteristics of Young Adults with Type 2 Diabetes Mellitus in South Korea (2010–2020) Ji Yoon Kim, Jiyoon Lee, Joon Ho Moon, Se Eun Park, Seung-Hyun Ko, Sung Hee Choi, Nam Hoon Kim Diabetes & Metabolism Journal.2025; 49(2): 172. CrossRef
Background Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
The consumption of ultra-processed foods (UPFs) has surged globally, raising significant public health concerns due to their associations with a range of adverse health outcomes. This review aims to elucidate potential health impacts of UPF intake and underscore the importance of considering diet quality when interpreting study findings. UPF group, as classified by the Nova system based on the extent of industrial processing, contains numerous individual food items with a wide spectrum of nutrient profiles, as well as differential quality as reflected by their potential health effects. The quality of a given food may well misalign with the processing levels so that a UPF food can be nutritious and healthful whereas a non-UPF food can be of low quality and excess intake of which may lead to adverse health consequences. The current review argues that it is critical to focus on the nutritional content and quality of foods and their role within the overall dietary pattern rather than only the level of processing. Further research should dissect health effects of diet quality and food processing, investigate the health impacts of ingredients that render the UPF categorization, understand roles of metabolomics and the gut microbiome in mediating and modulating the health effects of food processing, and consider environmental sustainability in UPF studies. Emphasizing nutrient-dense healthful foods and dietary patterns shall remain the pivotal strategy for promoting overall health and preventing chronic diseases.
Jin Hwa Kim, Junyeop Lee, Kyungdo Han, Jae-Taek Kim, Hyuk-Sang Kwon, on Behalf of the Diabetic Vascular Disease Research Group of the Korean Diabetes Association
Diabetes Metab J. 2024;48(6):1084-1092. Published online November 1, 2024
Background This study aimed to provide updated insights into the incidence and management of cardiovascular disease (CVD) in Korean adults with diabetes.
Methods Using data from the Korean National Health Insurance Service and Korea National Health and Nutrition Examination Survey, we analyzed the representative national estimates of CVD in adults with diabetes.
Results The age- and sex-standardized incidence rate of ischemic heart disease (IHD), ischemic stroke, and peripheral artery disease (PAD) decreased from 2010 to 2019 in individuals with type 2 diabetes mellitus (T2DM). However, an increase in the incidence of heart failure (HF) was observed during the same period. Only 4.96% of adults with diabetes and CVD achieved optimal control of all three risk factors (glycemic levels, blood pressure, and lipid control). Additionally, high-intensity statin treatment rates were 8.84% and 9.15% in individuals with IHD and ischemic stroke, respectively. Treatment with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) or a glucagon-like peptide-1 receptor agonist (GLP-1RA) was relatively low in 2019, with only 11.87%, 7.10%, and 11.05% of individuals with IHD, ischemic stroke, and HF, respectively, receiving SGLT2i treatment. Furthermore, only 1.08%, 0.79%, and 1.06% of patients with IHD, ischemic stroke, and HF, respectively, were treated with GLP-1RA.
Conclusion The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.
Citations
Citations to this article as recorded by
Big Data Research for Diabetes-Related Diseases Using the Korean National Health Information Database Kyung-Soo Kim, Bongseong Kim, Kyungdo Han Diabetes & Metabolism Journal.2025; 49(1): 13. CrossRef
Background Studies on predictive markers of insulin resistance (IR) and elevated liver transaminases in children and adolescents are limited. We evaluated the predictive capabilities of the single-point insulin sensitivity estimator (SPISE) index, metabolic score for insulin resistance (METS-IR), homeostasis model assessment of insulin resistance (HOMA-IR), the triglyceride (TG)/ high-density lipoprotein cholesterol (HDL-C) ratio, and the triglyceride-glucose index (TyG) for IR and alanine aminotransferase (ALT) elevation in this population.
Methods Data from 1,593 participants aged 10 to 18 years were analyzed using a nationwide survey. Logistic regression analysis was performed with IR and ALT elevation as dependent variables. Receiver operating characteristic (ROC) curves were generated to assess predictive capability. Proportions of IR and ALT elevation were compared after dividing participants based on parameter cutoff points.
Results All parameters were significantly associated with IR and ALT elevation, even after adjusting for age and sex, and predicted IR and ALT elevation in ROC curves (all P<0.001). The areas under the ROC curve of SPISE and METS-IR were higher than those of TyG and TG/HDL-C for predicting IR and were higher than those of HOMA-IR, TyG, and TG/HDL-C for predicting ALT elevation. The proportions of individuals with IR and ALT elevation were higher among those with METS-IR, TyG, and TG/ HDL-C values higher than the cutoff points, whereas they were lower among those with SPISE higher than the cutoff point.
Conclusion SPISE and METS-IR are superior to TG/HDL-C and TyG in predicting IR and ALT elevation. Thus, this study identified valuable predictive markers for young individuals.
Four soluble factors—putrescine, glucosamine, nicotinamide, and signal transducer and activator of transcription 3 (STAT3) inhibitor BP-1-102—were shown to differentiate bone marrow mononucleated cells (BMNCs) into functional insulin-producing cells (IPCs) in vitro. Transplantation of these IPCs improved hyperglycemia in diabetic mice. However, the role of endogenous BMNC regeneration in this effect was unclear. This study aimed to evaluate the effect of these factors on in vivo BMNC differentiation into IPCs in diabetic mice. Mice were orally administered the factors for 5 days, twice at 2-week intervals, and monitored for 45–55 days. Glucose tolerance, glucose-stimulated insulin secretion, and pancreatic insulin content were measured. Chimeric mice harboring BMNCs from insulin promoter luciferase/green fluorescent protein (GFP) transgenic mice were used to track endogenous BMNC fate. These factors lowered blood glucose levels, improved glucose tolerance, and enhanced insulin secretion. Immunostaining confirmed IPCs in the pancreas, showing the potential of these factors to induce β-cell regeneration and improve diabetes treatment.
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used for the treatment of type 2 diabetes mellitus (T2DM) given their extra-pancreatic effects. However, there are concerns about carcinogenesis in the pancreas and thyroid gland. We aimed to evaluate the site-specific incidence of cancer in patients with T2DM-treated GLP-1 RAs using a nationwide cohort.
Methods This study included data obtained from the Korean National Health Insurance Service (between 2004 and 2021). The primary outcome was newly diagnosed cancer, and the median follow-up duration for all participants was 8 years.
Results After propensity score matching, 7,827 participants were analyzed; 2,609 individuals each were included in the GLP-1 RA, diabetes mellitus (DM) control, and non-DM control groups. The incidence rate ratio (IRR) of subsequent cancer in patients with T2DM was 1.73, which was higher than that of individuals without DM, and it increased in both men and women. Analysis of patients with T2DM showed no increased cancer risk associated with the use of GLP-1 RA, and similar results were observed in both men and women. The IRRs of pancreatic cancer (0.74), thyroid cancer (1.32), and medullary thyroid cancer (0.34) did not significantly increase in the GLP-1 RA group compared with those in the DM control group.
Conclusion There was a 73% higher risk of cancer in patients with T2DM compared with the general population. However, among patients with T2DM, there was no association between the use of GLP-1 RAs and new-onset cancers, including pancreatic and medullary thyroid cancers.
Background Limited data are available on the adverse effects of new-onset diabetes after transplantation (NODAT) in solid organ transplantation (TPL) other than kidney. This study aimed to identify the risk of complications associated with NODAT in recipients of kidney, liver, or heart TPL.
Methods Using the Korean National Health Insurance Service database, recipients of kidney, liver, or heart TPL between 2009 and 2015 were identified. The incidence of coronary artery disease (CAD), cerebrovascular accident (CVA), and malignancy was compared across groups with NODAT, pretransplant diabetes mellitus (DM), and without DM using Cox regression analysis.
Results A total of 9,632 kidney, liver, or heart TPL recipients were included. During the median follow-up of 5.9 years, NODAT independently increased the incidence of CAD (hazard ratio [HR], 2.46; 95% confidence interval [CI], 1.39 to 4.30) and overall mortality (HR, 1.48; 95% CI, 1.14 to 1.95) compared to the reference group even after adjustment for confounders; this was more prominent in kidney TPL than in liver TPL. The risk of CVA was significantly increased by pretransplant DM but not by NODAT in both kidney and liver TPL (HR, 2.47; 95% CI, 1.68 to 3.65; and HR, 3.18; 95% CI, 1.07 to 9.48, respectively). NODAT increased the risk of malignancy in the crude model, which lost its statistical significance after confounder adjustment.
Conclusion NODAT independently increases the risk of CAD and mortality after TPL, which is more evident in kidney recipients. There was no additional increased risk of CVA or malignancy with NODAT in solid organ TPL.
Citations
Citations to this article as recorded by
New Onset Diabetes After Organ Transplantation: Risk Factors, Treatment, and Consequences Lucija Popović, Tomislav Bulum Diagnostics.2025; 15(3): 284. CrossRef
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body’s response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome’s role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome’s function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.