Citations
Advanced information technology can be used when developing diagnostic and treatment strategies to provide better care for diabetic patients. However, the levels of need and demand for the use of technological advances have not been investigated in diabetic patients. We proposed and developed an individualized, ubiquitous (U)-healthcare service using advanced information technology for more effective glucose control. Prior to our service initiation, we surveyed patient needs and other pertinent information.
During August 2009, we conducted a 34-item questionnaire survey among patients with diabetes who were older than 40 years in two certain hospitals in Korea.
The mean age of the 228 participants was 61.2±9 years, and males made up 49.1% of the sample. Seventy-one percent replied that they wanted individualized healthcare service, and they also wanted their health information to be delivered through mobile devices such as a cellular phone or a personal digital assistant (40.4%). Most patients had never heard of U-healthcare services (81.1%); however, after explaining the concept, 71.1% of participants responded that they would use the service if it was provided. Despite their willingness, participants were concerned about technical difficulty in using the service (26.3%) as well as the cost of the service (29.8%).
The current study suggests that more than 70% of diabetic patients are interested in using U-healthcare services. To encourage widespread use, the application program or device of U-healthcare services should be simple, easy to use and affordable while also including a policy for the protection of private information.
Citations
Clinical experience with the continuous glucose monitoring systems (CGMS) is limited in Korea. The objective of this study is to evaluate the accuracy of the CGMS and the correlation between interstitial fluid and venous plasma glucose level in Korean healthy male subjects.
Thirty-two subjects were served with glucose solution contained same amount of test food's carbohydrate and test foods after separate overnight fasts. CGMS was performed over 3 days during hopitalization for each subjects. Venous plasma glucose measurements were carried out during 4 hours (0, 0.25, 0.5, 0.75, 1, 2, 4 hours) just before and after glucose solution and test food load. The performance of the CGMS was evaluated by comparing its readings to those obtained at the same time by the hexokinase method using the auto biochemistry machine (Hitachi 7600-110). Also, correlations between glucose recorded with CGMS and venous plasma glucose value were examined.
CGMS slightly underestimated the glucose value as compared with the venous plasma glucose level (16.3 ± 22.2 mg/dL). Correlation between CGMS and venous plasma glucose values throughout sensor lifetime is 0.73 (regression analysis: slope = 1.08, intercept = 8.38 mg/dL). Sensor sensitivity can deteriorate over time, with correlations between venous blood glucose and CGMS values dropping from 0.77 during 1st day to 0.65 during 2nd and 3rd day.
The accuracy of data provided by CGMS may be less than expected. CGMS sensor sensitivity is decreased with the passage of time. But, from this study, CGMS can be used for glucose variability tendency monitoring conveniently to the Korean.
Citations