We aimed to quantify stress-induced hyperglycemia and differentiate the glucose response between normal animals and those with diabetes. We also examined the pattern in glucose fluctuation induced by stress according to type of diabetes.
To load psychological stress on animal models, we used a predator stress model by exposing rats to a cat for 60 minutes and measured glucose level from the beginning to the end of the test to monitor glucose fluctuation. We induced type 1 diabetes model (T1D) for ten Sprague-Dawley rats using streptozotocin and used five Otsuka Long-Evans Tokushima Fatty rats as obese type 2 diabetes model (OT2D) and 10 Goto-Kakizaki rats as nonobese type 2 diabetes model (NOT2D). We performed the stress loading test in both the normal and diabetic states and compared patterns of glucose fluctuation among the three models. We classified the pattern of glucose fluctuation into A, B, and C types according to speed of change in glucose level.
Increase in glucose, total amount of hyperglycemic exposure, time of stress-induced hyperglycemia, and speed of glucose increase were significantly increased in all models compared to the normal state. While the early increase in glucose after exposure to stress was higher in T1D and NOT2D, it was slower in OT2D. The rate of speed of the decrease in glucose level was highest in NOT2D and lowest in OT2D.
The diabetic state was more vulnerable to stress compared to the normal state in all models, and the pattern of glucose fluctuation differed among the three types of diabetes. The study provides basic evidence for stress-induced hyperglycemia patterns and characteristics used for the management of diabetes patients.
Citations
The aims of this study are to investigate the glycemic efficacy and predictive parameters of vildagliptin therapy in Korean subjects with type 2 diabetes.
In this retrospective study, we retrieved data for subjects who were on twice-daily 50 mg vildagliptin for at least 6 months, and classified the subjects into five treatment groups. In three of the groups, we added vildagliptin to their existing medication regimen; in the other two groups, we replaced one of their existing medications with vildagliptin. We then analyzed the changes in glucose parameters and clinical characteristics.
Ultimately, 327 subjects were analyzed in this study. Vildagliptin significantly improved hemoglobin A1c (HbA1c) levels over 6 months. The changes in HbA1c levels (ΔHbA1c) at month 6 were -2.24% (
Vildagliptin was effective when it was used in subjects with poor glycemic control. It controlled fasting plasma glucose levels as well as sulfonylurea treatment in Korean type 2 diabetic subjects.
Citations
While many studies have shown the good efficacy and safety of exenatide in patients with diabetes, limited information is available about exenatide in clinical practice in Korean populations. Therefore, this retrospective cohort study was designed to analyze the effects of exenatide on blood glucose level and body weight in Korean patients with type 2 diabetes mellitus.
We reviewed the records of the patients with diabetes who visited Seoul St. Mary's Hospital and for whom exenatide was prescribed from June 2009 to October 2011. After excluding subjects based on their race/ethnicity, medical history, whether or not they changed more than 2 kinds of oral hypoglycemic agents with exenatide treatment, loss to follow-up, or whether they stopped exenatide therapy within 6 months, a total of 52 subjects were included in the final analysis.
The mean glycated hemoglobin (HbA1c) level and weight remarkably decreased from 8.5±1.7% to 6.7±1.0% (
These results suggest that a 6-month exenatide injection therapy significantly improved patients' HbA1c levels and body weights without causing serious adverse effects in Korean patients with type 2 diabetes.
Citations