Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
5 "Eun-Hee Cho"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Guideline/Fact Sheet
Article image
Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun Bae, Eugene Han, Hye Won Lee, Cheol-Young Park, Choon Hee Chung, Dae Ho Lee, Eun-Hee Cho, Eun-Jung Rhee, Ji Hee Yu, Ji Hyun Park, Ji-Cheol Bae, Jung Hwan Park, Kyung Mook Choi, Kyung-Soo Kim, Mi Hae Seo, Minyoung Lee, Nan-Hee Kim, So Hun Kim, Won-Young Lee, Woo Je Lee, Yeon-Kyung Choi, Yong-ho Lee, You-Cheol Hwang, Young Sang Lyu, Byung-Wan Lee, Bong-Soo Cha, on Behalf of the Fatty Liver Research Group of the Korean Diabetes Association
Diabetes Metab J. 2024;48(6):1015-1028.   Published online November 21, 2024
DOI: https://doi.org/10.4093/dmj.2024.0541
  • 366 View
  • 70 Download
AbstractAbstract PDFPubReader   ePub   
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
Editorial
Oldies but Goodies: Thiazolidinedione as an Insulin Sensitizer with Cardioprotection
Eun-Hee Cho
Diabetes Metab J. 2022;46(6):827-828.   Published online November 24, 2022
DOI: https://doi.org/10.4093/dmj.2022.0372
  • 2,452 View
  • 167 Download
  • 4 Web of Science
  • 4 Crossref
PDFPubReader   ePub   

Citations

Citations to this article as recorded by  
  • Diabetes: a review of its pathophysiology, and advanced methods of mitigation
    Sarika Gupta, Nitin Sharma, Sandeep Arora, Saurabh Verma
    Current Medical Research and Opinion.2024; 40(5): 773.     CrossRef
  • A Green Approach: Optimization of the UPLC Method Using DoE Software for Concurrent Quantification of Pioglitazone and Dapagliflozin in a SNEDDS Formulation for the Treatment of Diabetes
    Ehab M. Elzayat, Abdelrahman Y. Sherif, Mohamed W. Attwa, Mohammad A. Altamimi
    ACS Omega.2024; 9(45): 45011.     CrossRef
  • Lobeglitazone, a novel thiazolidinedione, for secondary prevention in patients with ischemic stroke: a nationwide nested case-control study
    Joonsang Yoo, Jimin Jeon, Minyoul Baik, Jinkwon Kim
    Cardiovascular Diabetology.2023;[Epub]     CrossRef
  • Molecular Processes Involved in the Shared Pathways between Cardiovascular Diseases and Diabetes
    Julita Tokarek, Emilian Budny, Maciej Saar, Kamila Stańczak, Ewa Wojtanowska, Ewelina Młynarska, Jacek Rysz, Beata Franczyk
    Biomedicines.2023; 11(10): 2611.     CrossRef
Review
Basic Research
Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases
Siqi Hu, Eun-Hee Cho, Ji-Young Lee
Diabetes Metab J. 2020;44(2):234-244.   Published online March 24, 2020
DOI: https://doi.org/10.4093/dmj.2019.0243
  • 7,559 View
  • 171 Download
  • 22 Web of Science
  • 23 Crossref
AbstractAbstract PDFPubReader   

As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.

Citations

Citations to this article as recorded by  
  • Impact of housing temperature on adipose tissue HDAC9 expression and adipogenic differentiation in high fat‐fed mice
    Samah Ahmadieh, Brandee Goo, Abdalrahman Zarzour, David Kim, Hong Shi, Praneet Veerapaneni, Ronnie Chouhaita, Nicole K. H. Yiew, Carla Dominguez Gonzalez, Akash Chakravartty, James Pennoyer, Nazeera Hassan, Tyler W. Benson, Mourad Ogbi, David J. Fulton, R
    Obesity.2024; 32(1): 107.     CrossRef
  • HDAC9 inhibition reduces skeletal muscle atrophy and enhances regeneration in mice with cigarette smoke-induced COPD
    Guixian Zheng, Chao Li, Xiaoli Chen, Zhaohui Deng, Ting Xie, Zengyu Huo, Xinyan Wei, Yanbing Huang, Xia Zeng, Yu Luo, Jing Bai
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2024; 1870(3): 167023.     CrossRef
  • Identification of HDAC9 and ARRDC4 as potential biomarkers and targets for treatment of type 2 diabetes
    Jing Liu, Lingzhen Meng, Zhihong Liu, Ming Lu, Ruiying Wang
    Scientific Reports.2024;[Epub]     CrossRef
  • HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors
    Totan Das, Samima Khatun, Tarun Jha, Shovanlal Gayen
    Mini-Reviews in Medicinal Chemistry.2024; 24(7): 767.     CrossRef
  • The role of histone deacetylases in inflammatory respiratory diseases: an update
    Sicen Pan, Xiangdong Wang, Jian Jiao, Luo Zhang
    Expert Review of Clinical Immunology.2024; 20(10): 1193.     CrossRef
  • The Human Genetic Differences in the Outcomes of mRNA Vaccination against COVID-19: A Prospective Cohort Study
    Ha-Eun Ryu, Jihyun Yoon, Ja-Eun Choi, Seok-Jae Heo, Kyung-Won Hong, Dong-Hyuk Jung
    Vaccines.2024; 12(6): 626.     CrossRef
  • Targeting histone deacetylases for cancer therapy: Trends and challenges
    Tao Liang, Fengli Wang, Reham M. Elhassan, Yongmei Cheng, Xiaolei Tang, Wengang Chen, Hao Fang, Xuben Hou
    Acta Pharmaceutica Sinica B.2023; 13(6): 2425.     CrossRef
  • Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation
    Guokai Zhang, Zhenying Liu, Zihan Li, Bing Zhang, Pengyu Yao, Yun Qiao
    Frontiers in Genetics.2023;[Epub]     CrossRef
  • Research Progress on Histone Deacetylase Inhibitors
    玉姜 汤
    Hans Journal of Medicinal Chemistry.2023; 11(02): 116.     CrossRef
  • HDAC9 Inhibition as a Novel Treatment for Stroke
    Hugh S. Markus
    Stroke.2023; 54(12): 3182.     CrossRef
  • Histone deacetylase 9 exacerbates podocyte injury in hyperhomocysteinemia through epigenetic repression of Klotho
    Min Liu, Yang Zhang, Ping Zhan, Wenjuan Sun, Chuanqiao Dong, Xiaohan Liu, Yujie Yang, Xiaojie Wang, Yusheng Xie, Chengjiang Gao, Huili Hu, Benkang Shi, Ziying Wang, Chun Guo, Fan Yi
    Pharmacological Research.2023; 198: 107009.     CrossRef
  • Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration
    Ming Lei, Hui Lin, Deyao Shi, Pan Hong, Hui Song, Bomansaan Herman, Zhiwei Liao, Cao Yang
    Cellular & Molecular Biology Letters.2023;[Epub]     CrossRef
  • Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia A
    Sylvia Fong, Bridget Yates, Choong-Ryoul Sihn, Aras N. Mattis, Nina Mitchell, Su Liu, Chris B. Russell, Benjamin Kim, Adebayo Lawal, Savita Rangarajan, Will Lester, Stuart Bunting, Glenn F. Pierce, K. John Pasi, Wing Yen Wong
    Nature Medicine.2022; 28(4): 789.     CrossRef
  • Active RhoA Exerts an Inhibitory Effect on the Homeostasis and Angiogenic Capacity of Human Endothelial Cells
    Michael Hauke, Robert Eckenstaler, Anne Ripperger, Anna Ender, Heike Braun, Ralf A. Benndorf
    Journal of the American Heart Association.2022;[Epub]     CrossRef
  • HDAC9 Contributes to Serous Ovarian Cancer Progression through Regulating Epithelial–Mesenchymal Transition
    Long Xu, Jian Wang, Buhan Liu, Jiaying Fu, Yuanxin Zhao, Sihang Yu, Luyan Shen, Xiaoyu Yan, Jing Su
    Biomedicines.2022; 10(2): 374.     CrossRef
  • Common protein-coding variants influence the racing phenotype in galloping racehorse breeds
    Haige Han, Beatrice A. McGivney, Lucy Allen, Dongyi Bai, Leanne R. Corduff, Gantulga Davaakhuu, Jargalsaikhan Davaasambuu, Dulguun Dorjgotov, Thomas J. Hall, Andrew J. Hemmings, Amy R. Holtby, Tuyatsetseg Jambal, Badarch Jargalsaikhan, Uyasakh Jargalsaikh
    Communications Biology.2022;[Epub]     CrossRef
  • Proposed minimal essential co-expression and physical interaction networks involved in the development of cognition impairment in human mid and late life
    Zahra Salehi, Masoud Arabfard, Omid Sadatpour, Mina Ohadi
    Neurological Sciences.2021; 42(3): 951.     CrossRef
  • Emerging roles of SIRT6 in human diseases and its modulators
    Gang Liu, Haiying Chen, Hua Liu, Wenbo Zhang, Jia Zhou
    Medicinal Research Reviews.2021; 41(2): 1089.     CrossRef
  • Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9
    Claudio Brancolini, Eros Di Giorgio, Luigi Formisano, Teresa Gagliano
    Life.2021; 11(2): 90.     CrossRef
  • circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis
    Huan Wan, Ting You, Wei Luo
    Frontiers in Cardiovascular Medicine.2021;[Epub]     CrossRef
  • Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer
    Chun Yang, Stéphane Croteau, Pierre Hardy
    Cellular Oncology.2021; 44(5): 997.     CrossRef
  • Dual HDAC/BRD4 inhibitors against cancer
    Negar Omidkhah, Farzin Hadizadeh, Razieh Ghodsi
    Medicinal Chemistry Research.2021; 30(10): 1822.     CrossRef
  • miR‐211‐5p is down‐regulated and a prognostic marker in bladder cancer
    Weisheng Wang, Zhiming Liu, Xuegang Zhang, Junning Liu, Junqing Gui, Maorong Cui, Yong Li
    The Journal of Gene Medicine.2020;[Epub]     CrossRef
Original Articles
Complication
Soluble Dipeptidyl Peptidase-4 Levels Are Associated with Decreased Renal Function in Patients with Type 2 Diabetes Mellitus
Eun-Hee Cho, Sang-Wook Kim
Diabetes Metab J. 2019;43(1):97-104.   Published online October 8, 2018
DOI: https://doi.org/10.4093/dmj.2018.0030
  • 5,138 View
  • 60 Download
  • 14 Web of Science
  • 15 Crossref
AbstractAbstract PDFPubReader   
Background

Dipeptidyl peptidase-4 (DPP-4) is strongly expressed in the kidney, and soluble levels of this protein are used as a marker in various chronic inflammatory diseases, including diabetes, coronary artery disease, and cancer. This study examined the association between the serum soluble DPP-4 levels and renal function or cardiovascular risk in patients with type 2 diabetes mellitus.

Methods

In this retrospective analysis, soluble DPP-4 levels were measured in preserved sera from 140 patients with type 2 diabetes mellitus who had participated in our previous coronary artery calcium (CAC) score study.

Results

The mean±standard deviation soluble DPP-4 levels in our study sample were 645±152 ng/mL. Univariate analyses revealed significant correlations of soluble DPP-4 levels with the total cholesterol (r=0.214, P=0.019) and serum creatinine levels (r=−0.315, P<0.001) and the estimated glomerular filtration rate (eGFR; estimated using the modification of diet in renal disease equation) (r=0.303, P=0.001). The associations of soluble DPP-4 levels with serum creatinine and GFR remained significant after adjusting for age, body mass index, and duration of diabetes. However, no associations were observed between soluble DPP-4 levels and the body mass index, waist circumference, or CAC score.

Conclusion

These data suggest the potential use of serum soluble DPP-4 levels as a future biomarker of deteriorated renal function in patients with type 2 diabetes mellitus.

Citations

Citations to this article as recorded by  
  • Factors Involved in the Development of Diabetic Kidney Disease in Patients With Slowly Progressive Type 1 Diabetes Mellitus: A Retrospective Cohort Study
    Hideyuki Okuma, Takahiro Tsutsumi, Masashi Ichijo, Tetsuro Kobayashi, Kyoichiro Tsuchiya
    Cureus.2024;[Epub]     CrossRef
  • Sitagliptin Mitigates Diabetic Nephropathy in a Rat Model of Streptozotocin-Induced Type 2 Diabetes: Possible Role of PTP1B/JAK-STAT Pathway
    Sarah M. AL-Qabbaa, Samaher I. Qaboli, Tahani K. Alshammari, Maha A. Alamin, Haya M. Alrajeh, Lama A. Almuthnabi, Rana R. Alotaibi, Asma S. Alonazi, Anfal F. Bin Dayel, Nawal M. Alrasheed, Nouf M. Alrasheed
    International Journal of Molecular Sciences.2023; 24(7): 6532.     CrossRef
  • Evaluation of the efficacy of dipeptidyl peptidase-4 enzyme and selenium element in people with kidney failure in Kirkuk governorate
    Ibrahim Abdullah Ali Al-Jubouri, Nadia Ahmed Saleh Al-Jubouri
    Materials Today: Proceedings.2022; 60: 795.     CrossRef
  • Cardiovascular Effects of Incretin-Based Therapies: Integrating Mechanisms With Cardiovascular Outcome Trials
    John R. Ussher, Amanda A. Greenwell, My-Anh Nguyen, Erin E. Mulvihill
    Diabetes.2022; 71(2): 173.     CrossRef
  • Computer-Aided Screening of Phytoconstituents from Ocimum tenuiflorum against Diabetes Mellitus Targeting DPP4 Inhibition: A Combination of Molecular Docking, Molecular Dynamics, and Pharmacokinetics Approaches
    Harshit Sajal, Shashank M. Patil, Ranjith Raj, Abdullah M. Shbeer, Mohammed Ageel, Ramith Ramu
    Molecules.2022; 27(16): 5133.     CrossRef
  • Association Between DPP4 Inhibitor Use and the Incidence of Cirrhosis, ESRD, and Some Cancers in Patients With Diabetes
    Yewon Na, Soo Wan Kim, Ie Byung Park, Soo Jung Choi, Seungyoon Nam, Jaehun Jung, Dae Ho Lee
    The Journal of Clinical Endocrinology & Metabolism.2022; 107(11): 3022.     CrossRef
  • An update on the interaction between COVID-19, vaccines, and diabetic kidney disease
    Yang Yang, Shubiao Zou, Gaosi Xu
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Comparative Efficacy of Lobeglitazone Versus Pioglitazone on Albuminuria in Patients with Type 2 Diabetes Mellitus
    Kyung-Soo Kim, Sangmo Hong, Hong-Yup Ahn, Cheol-Young Park
    Diabetes Therapy.2021; 12(1): 171.     CrossRef
  • Renoprotective Effects of DPP-4 Inhibitors
    Daiji Kawanami, Yuichi Takashi, Hiroyuki Takahashi, Ryoko Motonaga, Makito Tanabe
    Antioxidants.2021; 10(2): 246.     CrossRef
  • Serum levels of soluble dipeptidyl peptidase-4 in type 2 diabetes are associated with severity of liver fibrosis evaluated by transient elastography (FibroScan) and the FAST (FibroScan-AST) score, a novel index of non-alcoholic steatohepatitis with signif
    Masaaki Sagara, Toshie Iijima, Masato Kase, Kanako Kato, Shintaro Sakurai, Takuya Tomaru, Teruo Jojima, Isao Usui, Yoshimasa Aso
    Journal of Diabetes and its Complications.2021; 35(5): 107885.     CrossRef
  • Distinctive CD26 Expression on CD4 T-Cell Subsets
    Oscar J. Cordero, Carlos Rafael-Vidal, Rubén Varela-Calviño, Cristina Calviño-Sampedro, Beatriz Malvar-Fernández, Samuel García, Juan E. Viñuela, José M. Pego-Reigosa
    Biomolecules.2021; 11(10): 1446.     CrossRef
  • The Long-Term Study of Urinary Biomarkers of Renal Injury in Spontaneously Hypertensive Rats
    Sebastián Montoro-Molina, Andrés Quesada, Francisco O’Valle, Natividad Martín Morales, María del Carmen de Gracia, Isabel Rodríguez-Gómez, Antonio Osuna, Rosemary Wangensteen, Félix Vargas
    Kidney and Blood Pressure Research.2021; 46(4): 502.     CrossRef
  • Assessment of retinol-binding protein-4, fibroblast growth factor-21, and dipeptidyl peptidase-4 in relation to obesity and insulin resistance of type 2 diabetes mellitus among Egyptian patients
    Ayat I. Ghanem, Atef A. Bassyouni, Ghada A. Omar
    Journal of The Arab Society for Medical Research.2021; 16(1): 32.     CrossRef
  • Serum Dipeptidyl peptidase-4 level is related to adiposity in type 1 diabetic adolescents
    Amany Ibrahim, Shaimaa Salah, Mona Attia, Hanan Madani, Samah Ahmad, Noha Arafa, Hend Soliman
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2020; 14(4): 609.     CrossRef
  • Phase I study of YS110, a recombinant humanized monoclonal antibody to CD26, in Japanese patients with advanced malignant pleural mesothelioma
    Masayuki Takeda, Yuichiro Ohe, Hidehito Horinouchi, Toyoaki Hida, Junichi Shimizu, Takashi Seto, Kaname Nosaki, Takumi Kishimoto, Itaru Miyashita, Masayuki Yamada, Yutaro Kaneko, Chikao Morimoto, Kazuhiko Nakagawa
    Lung Cancer.2019; 137: 64.     CrossRef
Homocysteine as a Risk Factor for Development of Microalbuminuria in Type 2 Diabetes
Eun-Hee Cho, Eun Hee Kim, Won Gu Kim, Eun Hui Jeong, Eun Hee Koh, Woo-Je Lee, Min-Seon Kim, Joong-Yeol Park, Ki-Up Lee
Korean Diabetes J. 2010;34(3):200-206.   Published online June 30, 2010
DOI: https://doi.org/10.4093/kdj.2010.34.3.200
  • 4,259 View
  • 31 Download
  • 15 Crossref
AbstractAbstract PDFPubReader   
Background

Kidney function is critical in homocysteine clearance, and plasma homocysteine level is frequently increased in patients with renal failure. On the other hand, recent studies in animals have shown that hyperhomocysteinemia induces renal injury. In this study, we determined whether hyperhomocysteinemia can be a risk factor for the development of microalbuminuria in patients with type 2 diabetes.

Methods

A nested case-control study. Of 887 patients with type 2 diabetes who did not have microalbuminuria at baseline, 76 developed microalbuminuria during follow-up (mean, 36.0 ± 11.7 months; range, 18 to 76 months). The control group consisted of 152 age- and sex-matched subjects who did not develop microalbuminuria. Baseline plasma homocysteine concentrations were measured in stored samples.

Results

Baseline plasma homocysteine concentrations and mean HbA1C levels during follow-up were significantly higher in patients who developed microalbuminuria than in those who remained normoalbuminuric. Multivariate logistic regression analysis showed that baseline plasma homocysteine level and mean HbA1C were independent predictors of microalbuminuria in type 2 diabetes.

Conclusion

Hyperhomocysteinemia was associated with increased risk of microalbuminuria in patients with type 2 diabetes supporting the concept that hyperhomocysteinemia has an etiologic role in the pathogenesis of diabetic nephropathy.

Citations

Citations to this article as recorded by  
  • Homocysteine and diabetes: Role in macrovascular and microvascular complications
    Emir Muzurović, Ivana Kraljević, Mirsala Solak, Siniša Dragnić, Dimitri P. Mikhailidis
    Journal of Diabetes and its Complications.2021; 35(3): 107834.     CrossRef
  • Associations of Homocysteine with B Vitamins and Zinc in Serum Levels of Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study
    Sadako MATSUI, Chika HIRAISHI, Ryo SATO, Takai KOJIMA, Kiyotaka ANDO, Kei FUJIMOTO, Hiroshi YOSHIDA
    Journal of Nutritional Science and Vitaminology.2021; 67(6): 417.     CrossRef
  • A risk scoring system for the decreased glomerular filtration rate in Chinese general population
    Yan Gu, Min Chen, Bei Zhu, Xiaohua Pei, Zhenzhu Yong, Xiaona Li, Qun Zhang, Weihong Zhao
    Journal of Clinical Laboratory Analysis.2020;[Epub]     CrossRef
  • Relationship between plasma total homocysteine and the severity of renal function in Chinese patients with type 2 diabetes mellitus aged ≥75 years
    Ning Ma, Ning Xu, Dong Yin, Weiwei Liu, Mengping Wu, Xingbo Cheng
    Medicine.2020; 99(27): e20737.     CrossRef
  • Correlation between serum homocysteine level and ulcerative colitis: A meta-analysis
    Yifang Zhong, Feng Yan, Weixia Jie, Ying Zhou, Fang Fang
    Pteridines.2019; 30(1): 114.     CrossRef
  • The role of molecular genetic alterations in genes involved in folate and homocysteine metabolism in multifactorial diseases pathogenesis
    A. M. Burdennyy, V. I. Loginov, T. M. Zavarykina, E. A. Braga, A. A. Kubatiev
    Russian Journal of Genetics.2017; 53(5): 528.     CrossRef
  • МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ НАРУШЕНИЯ ГЕНОВ ФОЛАТНОГО И ГОМОЦИСТЕИНОВОГО ОБМЕНА В ПАТОГЕНЕЗЕ РЯДА МНОГОФАКТОРНЫХ ЗАБОЛЕВАНИЙ, "Генетика"
    А. М. Бурдённый, В.И. Логинов, Т.М. Заварыкина, Э.А. Брага, А.А. Кубатиев
    Генетика.2017; (5): 526.     CrossRef
  • Association Between Plasma Homocysteine and Microalbuminuria in Untreated Patients with Essential Hypertension: a Case-Control Study
    Ze-min Kuang, Ying Wang, Shu-jun Feng, Long Jiang, Wen-li Cheng
    Kidney and Blood Pressure Research.2017; 42(6): 1303.     CrossRef
  • NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801
    Hila Roshanravan, Eun Young Kim, Stuart E. Dryer
    Diabetes.2016; 65(10): 3139.     CrossRef
  • Association between homocysteine status and the risk of nephropathy in type 2 diabetes mellitus
    Song Mao, Wei Xiang, Songming Huang, Aihua Zhang
    Clinica Chimica Acta.2014; 431: 206.     CrossRef
  • Prevalence and Determinants of Diabetic Nephropathy in Korea: Korea National Health and Nutrition Examination Survey
    Jae Hee Ahn, Ji Hee Yu, Seung-Hyun Ko, Hyuk-Sang Kwon, Dae Jung Kim, Jae Hyeon Kim, Chul Sik Kim, Kee-Ho Song, Jong Chul Won, Soo Lim, Sung Hee Choi, Kyungdo Han, Bong-Yun Cha, Nan Hee Kim
    Diabetes & Metabolism Journal.2014; 38(2): 109.     CrossRef
  • Plasma Homocysteine level and its clinical correlation with type 2 diabetes mellitus and its complications
    Satyendra Kumar Sonkar, Gyanendra Kumar Sonkar, Deepika Soni, Dheeraj Soni, Kauser Usman
    International Journal of Diabetes in Developing Countries.2014; 34(1): 3.     CrossRef
  • Genetic Predisposition for Development of Nephropathy in Type 2 Diabetes Mellitus
    Ravindra Kumar, Raj Kumar Sharma, Sarita Agarwal
    Biochemical Genetics.2013; 51(11-12): 865.     CrossRef
  • Is C677T Polymorphism in Methylenetetrahydrofolate Reductase Gene a Risk Factor for Diabetic Nephropathy or Diabetes Mellitus in a Chinese Population?
    Wen-peng Cui, Bing Du, Ye Jia, Wen-hua Zhou, Sheng-mao Liu, Ying-chun Cui, Fu-zhe Ma, Ping Luo, Li-ning Miao
    Archives of Medical Research.2012; 43(1): 42.     CrossRef
  • The role of coagulation and inflammation in the development of diabetic nephropathy in patients withdiabetes mellitus type 2
    Yulia Valer'evna Khasanova, Alsu Asatovna Nelaeva, Anna Borisovna Galkina, Irina Vasil'evna Medvedeva
    Diabetes mellitus.2012; 15(1): 31.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP