Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Zhu Zhong 1 Article
Basic Research
Article image
NG2-Glia Cause Diabetic Blood-Brain Barrier Disruption by Secreting MMP-9
Xiaolong Li, Yan Cai, Zhu Zhong, Maolin Li, Dong Huang, Zhifei Qiao, Hongli Zhou, Zuo Zhang, Jiyin Zhou
Received September 25, 2023  Accepted February 22, 2024  Published online July 23, 2024  
DOI: https://doi.org/10.4093/dmj.2023.0342    [Epub ahead of print]
  • 966 View
  • 32 Download
AbstractAbstract PDFPubReader   ePub   
Background
Disorders of the blood-brain barrier (BBB) arising from diabetes mellitus are closely related to diabetic encephalopathy. Previous research has suggested that neuron-glia antigen 2 (NG2)-glia plays a key role in maintaining the integrity of the BBB. However, the mechanism by which NG2-glia regulates the diabetic BBB remains unclear.
Methods
Type 2 diabetes mellitus (T2DM) db/db mice and db/m mice were used. Evans-Blue BBB permeability tests and transmission electron microscopy techniques were applied. Tight junction proteins were assessed by immunofluorescence and transmission electron microscopy. NG2-glia number and signaling pathways were evaluated by immunofluorescence. Detection of matrix metalloproteinase-9 (MMP-9) in serum was performed using enzyme-linked immunosorbent assay (ELISA).
Results
In T2DM db/db mice, BBB permeability in the hippocampus significantly increased from 16 weeks of age, and the structure of tight junction proteins changed. The number of NG2-glia in the hippocampus of db/db mice increased around microvessels from 12 weeks of age. Concurrently, the expression of MMP-9 increased in the hippocampus with no change in serum. Sixteen- week-old db/db mice showed activation of the Wnt/β-catenin signaling in hippocampal NG2-glia. Treatment with XAV-939 improved structural and functional changes in the hippocampal BBB and reduced MMP-9 secretion by hippocampal NG2-glia in db/db mice. It was also found that the upregulation of β-catenin protein in NG2-glia in the hippocampus of 16-week-old db/db mice was significantly alleviated by treatment with XAV-939.
Conclusion
The results indicate that NG2-glia can lead to structural and functional disruption of the diabetic BBB by activating Wnt/β-catenin signaling, upregulating MMP-9, and degrading tight junction proteins.

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP