Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Wonkyoung Cho  (Cho W) 1 Article
Basic Research
Article image
Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
SeoYeon Kim, Inyeong Kim, Wonkyoung Cho, Goo Taeg Oh, Young Mi Park
Diabetes Metab J. 2021;45(1):97-108.   Published online June 15, 2020
DOI: https://doi.org/10.4093/dmj.2019.0198
  • 8,258 View
  • 238 Download
  • 19 Web of Science
  • 19 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFSupplementary MaterialPubReader   ePub   
Background

Obesity and type 2 diabetes mellitus are world-wide health problems, and lack of understanding of their linking mechanism is one reason for limited treatment options. We determined if genetic deletion of vimentin, a type 3 intermediate filament, affects obesity and type 2 diabetes mellitus.

Methods

We fed vimentin-null (Vim−/−) mice and wild-type mice a high-fat diet (HFD) for 10 weeks and measured weight change, adiposity, blood lipids, and glucose. We performed intraperitoneal glucose tolerance tests and measured CD36, a major fatty acid translocase, and glucose transporter type 4 (GLUT4) in adipocytes from both groups of mice.

Results

Vim−/− mice fed an HFD showed less weight gain, less adiposity, improved glucose tolerance, and lower serum level of fasting glucose. However, serum triglyceride and non-esterified fatty acid levels were higher in Vim−/− mice than in wild-type mice. Vimentin-null adipocytes showed 41.1% less CD36 on plasma membranes, 27% less uptake of fatty acids, and 50.3% less GLUT4, suggesting defects in intracellular trafficking of these molecules.

Conclusion

We concluded that vimentin deficiency prevents obesity and insulin resistance in mice fed an HFD and suggest vimentin as a central mediator linking obesity and type 2 diabetes mellitus.

Citations

Citations to this article as recorded by  
  • Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy
    Ji-Hae Park, Soyeon Kwon, Young Mi Park
    Diabetes & Metabolism Journal.2024; 48(2): 215.     CrossRef
  • Neutrophils display distinct post-translational modifications in response to varied pathological stimuli
    Pooja Yedehalli Thimmappa, Aswathy S Nair, Sian D'silva, Anjana Aravind, Sandeep Mallya, Sreelakshmi Pathappillil Soman, Kanive Parashiva Guruprasad, Shamee Shastry, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad, Manjunath B Joshi
    International Immunopharmacology.2024; 132: 111950.     CrossRef
  • A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle
    Alba Rodriguez-Muñoz, Hanieh Motahari-Rad, Laura Martin-Chaves, Javier Benitez-Porres, Jorge Rodriguez-Capitan, Andrés Gonzalez-Jimenez, Maria Insenser, Francisco J. Tinahones, Mora Murri
    Current Obesity Reports.2024; 13(3): 403.     CrossRef
  • Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity
    Emily L. Rudolph, LiKang Chin
    Current Issues in Molecular Biology.2024; 46(7): 7134.     CrossRef
  • Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity
    Tamara Camino, Nerea Lago-Baameiro, María Pardo
    Biomedicines.2023; 11(2): 422.     CrossRef
  • Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity
    Prashanth Ganekal, Basavaraj Vastrad, Satish Kavatagimath, Chanabasayya Vastrad, Shivakumar Kotrashetti
    Medicina.2023; 59(2): 309.     CrossRef
  • Modified Signaling of Membrane Formyl Peptide Receptors in NADPH-Oxidase Regulation in Obesity-Resistant Mice
    Irina Tikhonova, Alsu Dyukina, Elvira Shaykhutdinova, Valentina Safronova
    Membranes.2023; 13(3): 306.     CrossRef
  • Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity
    Joanna Goralska, Urszula Razny, Anna Gruca, Anna Zdzienicka, Agnieszka Micek, Aldona Dembinska-Kiec, Bogdan Solnica, Malgorzata Malczewska-Malec
    Biomolecules.2023; 13(4): 675.     CrossRef
  • Blueberry and Blackberry Anthocyanins Ameliorate Metabolic Syndrome by Modulating Gut Microbiota and Short-Chain Fatty Acids Metabolism in High-Fat Diet-Fed C57BL/6J Mice
    Lanlan Du, Han Lü, Yan Chen, Xiaohua Yu, Tunyu Jian, Huifang Zhao, Wenlong Wu, Xiaoqin Ding, Jian Chen, Weilin Li
    Journal of Agricultural and Food Chemistry.2023; 71(40): 14649.     CrossRef
  • An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis
    Sara KM Jörgensen, Alena Karnošová, Simone Mazzaferro, Oliver Rowley, Hsiao-Jou Cortina Chen, Sarah J Robbins, Sarah Christofides, Florian T Merkle, Lenka Maletínská, David Petrik
    EMBO Reports.2023; 25(1): 351.     CrossRef
  • Cytoskeleton alterations in non-alcoholic fatty liver disease
    João Pessoa, José Teixeira
    Metabolism.2022; 128: 155115.     CrossRef
  • Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle?
    Marta Wolosowicz, Slawomir Prokopiuk, Tomasz W. Kaminski
    Medicina.2022; 58(4): 472.     CrossRef
  • Roles of vimentin in health and disease
    Karen M. Ridge, John E. Eriksson, Milos Pekny, Robert D. Goldman
    Genes & Development.2022; 36(7-8): 391.     CrossRef
  • Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis
    Seo Yeon Kim, Se-Jin Jeong, Ji-Hae Park, Wonkyoung Cho, Young-Ho Ahn, Youn-Hee Choi, Goo Taeg Oh, Roy L. Silverstein, Young Mi Park
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation
    Mahmoud Kandeel, Abdulla Al-Taher, Katharigatta N. Venugopala, Mohamed Marzok, Mohamed Morsy, Sreeharsha Nagaraja
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Brown Adipose Tissue Sheds Extracellular Vesicles That Carry Potential Biomarkers of Metabolic and Thermogenesis Activity Which Are Affected by High Fat Diet Intervention
    Tamara Camino, Nerea Lago-Baameiro, Aurelio Sueiro, Susana Belén Bravo, Iván Couto, Francisco Fernando Santos, Javier Baltar, Felipe F. Casanueva, María Pardo
    International Journal of Molecular Sciences.2022; 23(18): 10826.     CrossRef
  • Dietary tea seed saponin combined with aerobic exercise attenuated lipid metabolism and oxidative stress in mice fed a high‐fat diet (HFD)
    Wenjing Cao, Keying Wang, Chanhua Liang, Yanming Su, Shuang Liu, Jiali Li, Huishan Qing, Zhen Zeng, Ling Dai, Jia‐Le Song
    Journal of Food Biochemistry.2022;[Epub]     CrossRef
  • Influence of Protein Carbonylation on Human Adipose Tissue Dysfunction in Obesity and Insulin Resistance
    M. Carmen Navarro-Ruiz, M. Carmen Soler-Vázquez, Alberto Díaz-Ruiz, Juan R. Peinado, Andrea Nieto Calonge, Julia Sánchez-Ceinos, Carmen Tercero-Alcázar, Jaime López-Alcalá, Oriol A. Rangel-Zuñiga, Antonio Membrives, José López-Miranda, María M. Malagón, R
    Biomedicines.2022; 10(12): 3032.     CrossRef
  • The Role of Adipose Tissue Lipolysis in Diet-Induced Obesity: Focus on Vimentin
    Eun Roh, Hye Jin Yoo
    Diabetes & Metabolism Journal.2021; 45(1): 43.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP