Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Tae-Seo Sohn  (Sohn TS) 3 Articles
Complications
Article image
Diabetic Ketoacidosis as an Effect of Sodium-Glucose Cotransporter 2 Inhibitor: Real World Insights
Han-Sang Baek, Chaiho Jeong, Yeoree Yang, Joonyub Lee, Jeongmin Lee, Seung-Hwan Lee, Jae Hyoung Cho, Tae-Seo Sohn, Hyun-Shik Son, Kun-Ho Yoon, Eun Young Lee
Diabetes Metab J. 2024;48(6):1169-1175.   Published online June 10, 2024
DOI: https://doi.org/10.4093/dmj.2024.0036
  • 2,005 View
  • 217 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDFPubReader   ePub   
One of the notable adverse effects of sodium-glucose cotransporter 2 (SGLT2) inhibitor is diabetic ketoacidosis (DKA) often characterized by euglycemia. In this retrospective review of patients with DKA from 2015 to 2023, 21 cases of SGLT2 inhibitorassociated DKA were identified. Twelve (57.1%) exhibited euglycemic DKA (euDKA) while nine (42.9%) had hyperglycemic DKA (hyDKA). More than 90% of these cases were patients with type 2 diabetes mellitus. Despite similar age, sex, body mass index, and diabetes duration, individuals with hyDKA showed poorer glycemic control and lower C-peptide levels compared with euDKA. Renal impairment and acidosis were worse in the hyDKA group, requiring hemodialysis in two patients. Approximately one-half of hyDKA patients had concurrent hyperosmolar hyperglycemic state. Common symptoms included nausea, vomiting, general weakness, and dyspnea. Seizure was the initial manifestation of DKA in two cases. Infection and volume depletion were major contributors, while carbohydrate restriction and inadequate insulin treatment also contributed to SGLT2 inhibitor-associated DKA. Despite their beneficial effects, clinicians should be vigilant for SGLT2 inhibitor risk associated with DKA.

Citations

Citations to this article as recorded by  
  • Dapagliflozin/Empagliflozin/Ertugliflozin

    Reactions Weekly.2025; 2042(1): 142.     CrossRef
  • Diabetes mellitus im Alter
    Andrej Zeyfang, Jürgen Wernecke, Anke Bahrmann
    Diabetologie und Stoffwechsel.2024; 19(S 02): S226.     CrossRef
Basic Research
Article image
Mitochondrial TFAM as a Signaling Regulator between Cellular Organelles: A Perspective on Metabolic Diseases
Jin-Ho Koh, Yong-Woon Kim, Dae-Yun Seo, Tae-Seo Sohn
Diabetes Metab J. 2021;45(6):853-865.   Published online November 22, 2021
DOI: https://doi.org/10.4093/dmj.2021.0138
  • 8,800 View
  • 327 Download
  • 21 Web of Science
  • 25 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabolic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of metabolic diseases including insulin resistance and type 2 diabetes mellitus. Mitochondrial transcription factor A (Tfam) may regulate Ca2+ flux via changing the mitochondrial membrane potential and signals to other organelles such as the nucleus and ER. Since Tfam is involved in metabolic function in the mitochondria, here, we discuss the contribution of Tfam in coordinating mitochondria-ER activities for Ca2+ flux and describe the mechanisms by which Tfam affects mitochondrial Ca2+ flux in response to metabolic challenges.

Citations

Citations to this article as recorded by  
  • Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis
    Haihan Yu, Kaidi Ren, Yage Jin, Li Zhang, Hui Liu, Zhen Huang, Ziheng Zhang, Xing Chen, Yang Yang, Ziqing Wei
    Neuropharmacology.2025; 264: 110217.     CrossRef
  • Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong
    Bingjia Zhao, Qian Zhang, Yiqian He, Weifang Cao, Wei Song, Xiaochun Liang
    Journal of Pharmaceutical Analysis.2024; 14(2): 225.     CrossRef
  • Mitochondrial damage‐associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus
    Yan Wang, Jingwu Wang, Si‐Yu Tao, Zhengting Liang, Rong xie, Nan‐nan Liu, Ruxue Deng, Yuelin Zhang, Deqiang Deng, Guangjian Jiang
    Diabetes/Metabolism Research and Reviews.2024;[Epub]     CrossRef
  • Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging
    Hiroshi Kobayashi, Chiharu Yoshimoto, Sho Matsubara, Hiroshi Shigetomi, Shogo Imanaka
    Reproductive Sciences.2024; 31(4): 906.     CrossRef
  • The Protective Mechanism of TFAM on Mitochondrial DNA and its Role in Neurodegenerative Diseases
    Ying Song, Wenjun Wang, Beibei Wang, Qiwen Shi
    Molecular Neurobiology.2024; 61(7): 4381.     CrossRef
  • When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness
    May-Kristin Torp, Kåre-Olav Stensløkken, Jarle Vaage
    Journal of Intensive Care Medicine.2024;[Epub]     CrossRef
  • Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice
    Vicki Wang, Kuan-Yin Tseng, Tung-Tai Kuo, Eagle Yi-Kung Huang, Kuo-Lun Lan, Zi-Rong Chen, Kuo-Hsing Ma, Nigel H. Greig, Jin Jung, Ho-II Choi, Lars Olson, Barry J. Hoffer, Yuan-Hao Chen
    Journal of Biomedical Science.2024;[Epub]     CrossRef
  • The role of mitochondrial damage-associated molecular patterns in acute pancreatitis
    Yan Zhou, Xiaoyi Huang, Yinglu Jin, Minhao Qiu, Peter C. Ambe, Zarrin Basharat, Wandong Hong
    Biomedicine & Pharmacotherapy.2024; 175: 116690.     CrossRef
  • TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA
    Hao Liu, Cien Zhen, Jianming Xie, Zhenhuan Luo, Lin Zeng, Guojun Zhao, Shaohua Lu, Haixia Zhuang, Hualin Fan, Xia Li, Zhaojie Liu, Shiyin Lin, Huilin Jiang, Yuqian Chen, Jiahao Cheng, Zhiyu Cao, Keyu Dai, Jinhua Shi, Zhaohua Wang, Yongquan Hu, Tian Meng,
    Nature Cell Biology.2024; 26(6): 878.     CrossRef
  • Disrupted mitochondrial transcription factor A expression promotes mitochondrial dysfunction and enhances ocular surface inflammation by activating the absent in melanoma 2 inflammasome
    Yaqiong Li, Lei Tian, Siyuan Li, Xiaoniao Chen, Fengyang Lei, Jiayu Bao, Qianru Wu, Ya Wen, Ying Jie
    Free Radical Biology and Medicine.2024; 222: 106.     CrossRef
  • Prolonged Hypoxic Exposure Impairs Endothelial Functions: Possible Mechanism of HIF-1α Signaling
    Junyoung Hong, Junchul Shin
    Exercise Science.2024; 33(2): 168.     CrossRef
  • Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease
    Yan Zhang, Shibo Wei, Eun-Ju Jin, Yunju Jo, Chang-Myung Oh, Gyu-Un Bae, Jong-Sun Kang, Dongryeol Ryu
    Diabetes & Metabolism Journal.2024; 48(4): 487.     CrossRef
  • Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia
    Huynh Cao, Jeffrey Xiao, David J. Baylink, Vinh Nguyen, Nathan Shim, Jae Lee, Dave J. R. Mallari, Samiksha Wasnik, Saied Mirshahidi, Chien-Shing Chen, Hisham Abdel-Azim, Mark E. Reeves, Yi Xu
    Biomedicines.2024; 12(10): 2250.     CrossRef
  • TFAM and Mitochondrial Protection in Diabetic Kidney Disease
    Siming Yu, Xinxin Lu, Chunsheng Li, Zehui Han, Yue Li, Xianlong Zhang, Dandan Guo
    Diabetes, Metabolic Syndrome and Obesity.2024; Volume 17: 4355.     CrossRef
  • Effect of High-Dose Vitamin C on Tendon Cell Degeneration—An In Vitro Study
    Shusuke Ueda, Toru Ichiseki, Miyako Shimasaki, Daisuke Soma, Masaru Sakurai, Ayumi Kaneuji, Norio Kawahara
    International Journal of Molecular Sciences.2024; 25(24): 13358.     CrossRef
  • Control of Mitochondrial Quality: A Promising Target for Diabetic Kidney Disease Treatment
    Qi Li, Jin Shang, Reiko Inagi
    Kidney International Reports.2024;[Epub]     CrossRef
  • Effects of the anti-inflammatory drug celecoxib on cell death signaling in human colon cancer
    Ryuto Maruyama, Yuki Kiyohara, Yasuhiro Kudo, Tomoyasu Sugiyama
    Naunyn-Schmiedeberg's Archives of Pharmacology.2023; 396(6): 1171.     CrossRef
  • gp130 Activates Mitochondrial Dynamics for Hepatocyte Survival in a Model of Steatohepatitis
    Daria Shunkina, Anastasia Dakhnevich, Egor Shunkin, Olga Khaziakhmatova, Valeria Shupletsova, Maria Vulf, Alexandra Komar, Elena Kirienkova, Larisa Litvinova
    Biomedicines.2023; 11(2): 396.     CrossRef
  • Pharmacological Activation of Rev-erbα Attenuates Doxorubicin-Induced Cardiotoxicity by PGC-1α Signaling Pathway
    Runmei Zou, Shuo Wang, Hong Cai, Yuwen Wang, Cheng Wang, Vivek Pandey
    Cardiovascular Therapeutics.2023; 2023: 1.     CrossRef
  • Protective Effect of Ergothioneine against 7-Ketocholesterol-Induced Mitochondrial Damage in hCMEC/D3 Human Brain Endothelial Cells
    Damien Meng-Kiat Leow, Irwin Kee-Mun Cheah, Zachary Wei-Jie Fong, Barry Halliwell, Wei-Yi Ong
    International Journal of Molecular Sciences.2023; 24(6): 5498.     CrossRef
  • Effect of PPARγ on oxidative stress in diabetes-related dry eye
    Jing Wang, Shuangping Chen, Xiuxiu Zhao, Qian Guo, Ruibo Yang, Chen Zhang, Yue Huang, Lechong Ma, Shaozhen Zhao
    Experimental Eye Research.2023; 231: 109498.     CrossRef
  • Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson’s Disease
    Yu-Ling Hsu, Hui-Jye Chen, Jia-Xin Gao, Ming-Yang Yang, Ru-Huei Fu
    Antioxidants.2023; 12(9): 1782.     CrossRef
  • TBBPA causes apoptosis in grass carp hepatocytes involving destroyed ER-mitochondrial function
    Dongxu Han, Naixi Yang, Huanyi Liu, Yujie Yao, Shiwen Xu
    Chemosphere.2023; 341: 139974.     CrossRef
  • Impact of Roux-en-Y Gastric Bypass on Mitochondrial Biogenesis and Dynamics in Leukocytes of Obese Women
    Zaida Abad-Jiménez, Teresa Vezza, Sandra López-Domènech, Meylin Fernández-Reyes, Francisco Canet, Carlos Morillas, Segundo Ángel Gómez-Abril, Celia Bañuls, Víctor M. Víctor, Milagros Rocha
    Antioxidants.2022; 11(7): 1302.     CrossRef
  • The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes
    Jihong Oh, Song-Yi Han, Soo Kyoung Lim, Hojun Kim
    Journal of Korean Medicine for Obesity Research.2022; 22(2): 93.     CrossRef
Angiotensin II Inhibits Insulin Binding to Endothelial Cells
Su-Jin Oh, Won-Chul Ha, Jee-In Lee, Tae-Seo Sohn, Ji-Hyun Kim, Jung-Min Lee, Sang-Ah Chang, Oak-Kee Hong, Hyun-Shik Son
Diabetes Metab J. 2011;35(3):243-247.   Published online June 30, 2011
DOI: https://doi.org/10.4093/dmj.2011.35.3.243
  • 4,489 View
  • 27 Download
  • 6 Crossref
AbstractAbstract PDFPubReader   
Background

Insulin-mediated glucose uptake in insulin target tissues is correlated with interstitial insulin concentration, rather than plasma insulin concentration. Therefore, insulin delivery to the interstitium of target tissues is very important, and the endothelium may also play an important role in the development of insulin resistance.

Methods

After treating bovine aortic endothelial cells with angiotensin II (ATII), we observed the changes in insulin binding capacity and the amounts of insulin receptor (IR) on the cell membranes and in the cytosol.

Results

After treatment of 10-7M ATII, insulin binding was decreased progressively, up to 60% at 60 minutes (P<0.05). ATII receptor blocker (eprosartan) dose dependently improved the insulin binding capacity which was reduced by ATII (P<0.05). At 200 µM, eprosartan fully restored insulin binding capacity, althogh it resulted in only a 20% to 30% restoration at the therapeutic concentration. ATII did not affect the total amount of IR, but it did reduce the amount of IR on the plasma membrane and increased that in the cytosol.

Conclusion

ATII decreased the insulin binding capacity of the tested cells. ATII did not affect the total amount of IR but did decrease the amount of IR on the plasma membrane. Our data indicate that ATII decreases insulin binding by translocating IR from the plasma membrane to the cytosol. The binding of insulin to IR is important for insulin-induced vasodilation and transendothelial insulin transport. Therefore, ATII may cause insulin resistance through this endothelium-based mechanism.

Citations

Citations to this article as recorded by  
  • Acute, local infusion of angiotensin II impairs microvascular and metabolic insulin sensitivity in skeletal muscle
    Dino Premilovac, Emily Attrill, Stephen Rattigan, Stephen M Richards, Jeonga Kim, Michelle A Keske
    Cardiovascular Research.2019; 115(3): 590.     CrossRef
  • Angiotensin II type 2 receptor inhibits expression and function of insulin receptor in rat renal proximal tubule cells
    Yang Yang, Caiyu Chen, Chunjiang Fu, Zaicheng Xu, Cong Lan, Yongchun Zeng, Zhi Chen, Pedro A. Jose, Ye Zhang, Chunyu Zeng
    Journal of the American Society of Hypertension.2018; 12(2): 135.     CrossRef
  • Endothelial function, its relation to arterial hypertension and the possibility of its modulation
    Vladislav Biel, Jan Novák, Luděk Pluháček, Jiří Špác
    Vnitřní lékařství.2018; 64(7-8): 762.     CrossRef
  • Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer’s Disease
    Juan M. Saavedra
    Cellular and Molecular Neurobiology.2016; 36(2): 259.     CrossRef
  • Ameliorative effect of eprosartan on high-fat diet/streptozotocin-induced early diabetic nephropathy in rats
    Mohamed A. Morsy, Gehan H. Heeba, Magda E. Mahmoud
    European Journal of Pharmacology.2015; 750: 90.     CrossRef
  • Metabolic actions of angiotensin II and insulin: A microvascular endothelial balancing act
    Ranganath Muniyappa, Sahzene Yavuz
    Molecular and Cellular Endocrinology.2013; 378(1-2): 59.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal
Close layer
TOP