Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Sang Jin Kim  (Kim SJ) 3 Articles
Clinical Diabetes & Therapeutics
Effects of Lobeglitazone, a Novel Thiazolidinedione, on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus over 52 Weeks
Soo Lim, Kyoung Min Kim, Sin Gon Kim, Doo Man Kim, Jeong-Taek Woo, Choon Hee Chung, Kyung Soo Ko, Jeong Hyun Park, Yongsoo Park, Sang Jin Kim, Hak Chul Jang, Dong Seop Choi
Diabetes Metab J. 2017;41(5):377-385.   Published online October 24, 2017
DOI: https://doi.org/10.4093/dmj.2017.41.5.377
  • 4,235 View
  • 41 Download
  • 19 Web of Science
  • 20 Crossref
AbstractAbstract PDFPubReader   
Background

The aim of this multicenter, randomized, double-blind study was to examine the effect of lobeglitazone, a novel thiazolidinedione, on the changes in bone mineral density (BMD) in patients with type 2 diabetes mellitus.

Methods

A 24-week, double-blinded phase was followed by a 28-week, open-label phase, in which the placebo group also started to receive lobeglitazone. A total of 170 patients aged 34 to 76 years were randomly assigned in a 2:1 ratio to receive lobeglitazone 0.5 mg or a matching placebo orally, once daily. BMD was assessed using dual-energy X-ray absorptiometry at week 24 and at the end of the study (week 52).

Results

During the double-blinded phase, the femur neck BMD showed decreasing patterns in both groups, without statistical significance (−0.85%±0.36% and −0.78%±0.46% in the lobeglitazone and placebo groups, respectively). The treatment difference between the groups was 0.07%, which was also not statistically significant. Further, minimal, nonsignificant decreases were observed in both groups in the total hip BMD compared to values at baseline, and these differences also did not significantly differ between the groups. During the open-label phase, the BMD was further decreased, but not significantly, by −0.32% at the femur neck and by −0.60% at the total hip in the lobeglitazone group, and these changes did not significantly differ compared with the original placebo group switched to lobeglitazone.

Conclusion

Our results indicate that treatment with lobeglitazone 0.5 mg over 52 weeks showed no detrimental effect on the BMD compared to the placebo.

Citations

Citations to this article as recorded by  
  • Efficacy and safety of novel thiazolidinedione lobeglitazone for managing type-2 diabetes a meta-analysis
    Deep Dutta, Saptarshi Bhattacharya, Manoj Kumar, Priyankar K. Datta, Ritin Mohindra, Meha Sharma
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(1): 102697.     CrossRef
  • Efficacy and safety of lobeglitazone, a new Thiazolidinedione, as compared to the standard of care in type 2 diabetes mellitus: A systematic review and meta-analysis
    Shashank R. Joshi, Saibal Das, Suja Xaviar, Shambo Samrat Samajdar, Indranil Saha, Sougata Sarkar, Shatavisa Mukherjee, Santanu Kumar Tripathi, Jyotirmoy Pal, Nandini Chatterjee
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(1): 102703.     CrossRef
  • The benefits of adipocyte metabolism in bone health and regeneration
    Lisa-Marie Burkhardt, Christian H. Bucher, Julia Löffler, Charlotte Rinne, Georg N. Duda, Sven Geissler, Tim J. Schulz, Katharina Schmidt-Bleek
    Frontiers in Cell and Developmental Biology.2023;[Epub]     CrossRef
  • Will lobeglitazone rival pioglitazone? A systematic review and critical appraisal
    Kalyan Kumar Gangopadhyay, Awadhesh Kumar Singh
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2023; 17(4): 102747.     CrossRef
  • Comparison of therapeutic efficacy and safety of sitagliptin, dapagliflozin, or lobeglitazone adjunct therapy in patients with type 2 diabetes mellitus inadequately controlled on sulfonylurea and metformin: Third agent study
    Jun Hwa Hong, Jun Sung Moon, Kayeon Seong, Soo Lim
    Diabetes Research and Clinical Practice.2023; 203: 110872.     CrossRef
  • Bone Mineral Density Evaluation Among Type 2 Diabetic Patients in Rural Haryana, India: An Analytical Cross-Sectional Study
    Nitish Khandelwal, Surbhi Rajauria, Siddhesh Pandurang Kanjalkar, Omkar Shivaji Chavanke, Sanjay Rai
    Cureus.2023;[Epub]     CrossRef
  • Lobeglitazone and Its Therapeutic Benefits: A Review
    Balamurugan M, Sarumathy S, Robinson R
    Cureus.2023;[Epub]     CrossRef
  • A double‐blind, Randomized controlled trial on glucose‐lowering EFfects and safety of adding 0.25 or 0.5 mg lobeglitazone in type 2 diabetes patients with INadequate control on metformin and dipeptidyl peptidase‐4 inhibitor therapy: REFIND study
    Soree Ryang, Sang Soo Kim, Ji Cheol Bae, Ji Min Han, Su Kyoung Kwon, Young Il Kim, Il Seong Nam‐Goong, Eun Sook Kim, Mi‐kyung Kim, Chang Won Lee, Soyeon Yoo, Gwanpyo Koh, Min Jeong Kwon, Jeong Hyun Park, In Joo Kim
    Diabetes, Obesity and Metabolism.2022; 24(9): 1800.     CrossRef
  • A Real-World Study of Long-Term Safety and Efficacy of Lobeglitazone in Korean Patients with Type 2 Diabetes Mellitus
    Bo-Yeon Kim, Hyuk-Sang Kwon, Suk Kyeong Kim, Jung-Hyun Noh, Cheol-Young Park, Hyeong-Kyu Park, Kee-Ho Song, Jong Chul Won, Jae Myung Yu, Mi Young Lee, Jae Hyuk Lee, Soo Lim, Sung Wan Chun, In-Kyung Jeong, Choon Hee Chung, Seung Jin Han, Hee-Seok Kim, Ju-Y
    Diabetes & Metabolism Journal.2022; 46(6): 855.     CrossRef
  • Comparative Efficacy of Lobeglitazone Versus Pioglitazone on Albuminuria in Patients with Type 2 Diabetes Mellitus
    Kyung-Soo Kim, Sangmo Hong, Hong-Yup Ahn, Cheol-Young Park
    Diabetes Therapy.2021; 12(1): 171.     CrossRef
  • Lobeglitazone: A Novel Thiazolidinedione for the Management of Type 2 Diabetes Mellitus
    Jaehyun Bae, Taegyun Park, Hyeyoung Kim, Minyoung Lee, Bong-Soo Cha
    Diabetes & Metabolism Journal.2021; 45(3): 326.     CrossRef
  • Effect of lobeglitazone on motor function in rat model of Parkinson’s disease with diabetes co-morbidity
    Kambiz Hassanzadeh, Arman Rahimmi, Mohammad Raman Moloudi, Rita Maccarone, Massimo Corbo, Esmael Izadpanah, Marco Feligioni
    Brain Research Bulletin.2021; 173: 184.     CrossRef
  • Recent Perspective on Thiazolidinedione
    Won Jun Kim
    The Journal of Korean Diabetes.2021; 22(2): 97.     CrossRef
  • Use of in vitro bone models to screen for altered bone metabolism, osteopathies, and fracture healing: challenges of complex models
    Sabrina Ehnert, Helen Rinderknecht, Romina H. Aspera-Werz, Victor Häussling, Andreas K. Nussler
    Archives of Toxicology.2020; 94(12): 3937.     CrossRef
  • Update on: effects of anti-diabetic drugs on bone metabolism
    Guillaume Mabilleau, Béatrice Bouvard
    Expert Review of Endocrinology & Metabolism.2020; 15(6): 415.     CrossRef
  • The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta‐analysis of observational studies
    Khemayanto Hidayat, Xuan Du, Meng‐Jiao Wu, Bi‐Min Shi
    Obesity Reviews.2019; 20(10): 1494.     CrossRef
  • Diabetes pharmacotherapy and effects on the musculoskeletal system
    Evangelia Kalaitzoglou, John L. Fowlkes, Iuliana Popescu, Kathryn M. Thrailkill
    Diabetes/Metabolism Research and Reviews.2019;[Epub]     CrossRef
  • Morin Exerts Anti‐Arthritic Effects by Attenuating Synovial Angiogenesis via Activation of Peroxisome Proliferator Activated Receptor‐γ
    Mengfan Yue, Ni Zeng, Yufeng Xia, Zhifeng Wei, Yue Dai
    Molecular Nutrition & Food Research.2018;[Epub]     CrossRef
  • The effects of diabetes therapy on bone: A clinical perspective
    Karim G. Kheniser, Carmen M. Polanco Santos, Sangeeta R. Kashyap
    Journal of Diabetes and its Complications.2018; 32(7): 713.     CrossRef
  • Changes in the Bone Mineral Density of Femur Neck and Total Hip Over a 52-Week Treatment with Lobeglitazone
    Da Young Lee, Ji A Seo
    Diabetes & Metabolism Journal.2017; 41(5): 374.     CrossRef
Obesity and Metabolic Syndrome
The Usefulness of the Glycosylated Hemoglobin Level for the Diagnosis of Gestational Diabetes Mellitus in the Korean Population
Ah Jeong Ryu, Hyuk Jin Moon, Joo Ok Na, Yeo Joo Kim, Sang Jin Kim, Sang Il Mo, Jeong Ran Byun
Diabetes Metab J. 2015;39(6):507-511.   Published online November 23, 2015
DOI: https://doi.org/10.4093/dmj.2015.39.6.507
  • 3,455 View
  • 34 Download
  • 12 Web of Science
  • 14 Crossref
AbstractAbstract PDFPubReader   
Background

An oral glucose tolerance test (OGTT) is the current method used for screening and diagnosis of gestational diabetes mellitus (GDM). OGTT is a relatively complicated procedure and is expensive. Thus, new strategies that do not require fasting or more than a single blood draw may improve the diagnosis of GDM and increase the rate of GDM testing. We investigated the utility of monitoring glycosylated hemoglobin (HbA1c) levels for the diagnosis of GDM.

Methods

The data from 992 pregnant women with estimated gestational ages ranging from 24 to 28 weeks were retrospectively reviewed. There were 367 women with plasma glucose levels ≥140 mg/dL 1 hour after a 50-g OGTT. GDM was diagnosed according to the Carpenter-Coustan criteria for a 3-hour 100 g OGTT. A HbA1c assessment was performed at the same time.

Results

We enrolled 343 women in this study, and there were 109 women with GDM. The area under the curve the receiver operating characteristic curve for HbA1c detection of GDM was 0.852 (95% confidence interval, 0.808 to 0.897). A HbA1c cutoff value ≥5.35% had maximal points on the Youden index (0.581). The sensitivity was 87.2% and the specificity was 70.9% for diagnosing GDM. A threshold value ≥5.35% indicated that 163 patients had GDM and that 68 (41.7%) were false positive. The positive predictive value was 58.3% at this threshold value.

Conclusion

Despite substantial progress in methodology, HbA1c values cannot replace OGTT for the diagnosis of GDM.

Citations

Citations to this article as recorded by  
  • Predelivery HbA1c levels and their relationship with adverse perinatal outcomes in women with normal 75-g OGTT
    Xiaoxia Tang, Jin Wei, Zifeng Jiang, Shaohua Wu
    Archives of Gynecology and Obstetrics.2023;[Epub]     CrossRef
  • The diagnostic value of glycosylated hemoglobin for gestational diabetes mellitus in Asian populations: A systematic review and meta‐analysis
    Jiani Zhang, Fan Zhou, Tingting Xu, Jinfeng Xu, Yaqian Li, Li Lin, Qi Cao, Xiaodong Wang
    Journal of Obstetrics and Gynaecology Research.2022; 48(4): 902.     CrossRef
  • The role of first-trimester HbA1c in the early detection of gestational diabetes
    Mehrnaz Valadan, Zeinab Bahramnezhad, Fatemeh Golshahi, Elham Feizabad
    BMC Pregnancy and Childbirth.2022;[Epub]     CrossRef
  • Glycaemic Variability and Risk Factors of Pregnant Women with and without Gestational Diabetes Mellitus Measured by Continuous Glucose Monitoring
    Martina Gáborová, Viera Doničová, Ivana Bačová, Mária Pallayová, Martin Bona, Igor Peregrim, Soňa Grešová, Judita Štimmelová, Barbora Dzugasová, Lenka Šalamonová Blichová, Viliam Donič
    International Journal of Environmental Research and Public Health.2021; 18(7): 3402.     CrossRef
  • A Review on Research Progress in the Application of Glycosylated Hemoglobin and Glycated Albumin in the Screening and Monitoring of Gestational Diabetes
    Xinyan Liu, Na Wu, Abdulrahman Al-Mureish
    International Journal of General Medicine.2021; Volume 14: 1155.     CrossRef
  • Evaluation of the Combination of HbA1C with Hematocrit for Early Screening of Gestational Diabetes Mellitus
    Ali Reza Norouzi, Mahsa Siavashi, Fatemeh Norouzi, Maryam Talayeh, Somayyeh Noei Teymoordash
    Journal of Obstetrics, Gynecology and Cancer Research.2021; 6(4): 217.     CrossRef
  • The accuracy of haemoglobin A1c as a screening and diagnostic test for gestational diabetes: a systematic review and meta-analysis of test accuracy studies
    Chiamaka Esther Amaefule, Archana Sasitharan, Princee Kalra, Stamatina Iliodromoti, Mohammed S.B. Huda, Ewelina Rogozinska, Javier Zamora, Shakila Thangaratinam
    Current Opinion in Obstetrics & Gynecology.2020; 32(5): 322.     CrossRef
  • Downregulation of microRNA-873 attenuates insulin resistance and myocardial injury in rats with gestational diabetes mellitus by upregulating IGFBP2
    Na Han, Hai-Yan Fang, Jie-Xuan Jiang, Qian Xu
    American Journal of Physiology-Endocrinology and Metabolism.2020; 318(5): E723.     CrossRef
  • Reliability of glycosylated hemoglobin in the diagnosis of gestational diabetes mellitus
    Duria A. Rayis, Abdel B. A. Ahmed, Manal E. Sharif, Amir ElSouli, Ishag Adam
    Journal of Clinical Laboratory Analysis.2020;[Epub]     CrossRef
  • Mid‐trimester glycosylated hemoglobin levels (HbA1c) and its correlation with oral glucose tolerance test (World Health Organization 1999)
    Devanshi Dubey, Shipra Kunwar, Uma Gupta
    Journal of Obstetrics and Gynaecology Research.2019; 45(4): 817.     CrossRef
  • The utility of HbA1c combined with haematocrit for early screening of gestational diabetes mellitus
    Kui Wu, Yan Cheng, Tingting Li, Ziwen Ma, Junxiu Liu, Qingying Zhang, Haidong Cheng
    Diabetology & Metabolic Syndrome.2018;[Epub]     CrossRef
  • The Cutoff Value of HbA1c in Predicting Diabetes and Impaired Fasting Glucose
    Seyoung Kwon, Youngak Na
    The Korean Journal of Clinical Laboratory Science.2017; 49(2): 114.     CrossRef
  • Diagnosing gestational diabetes mellitus: implications of recent changes in diagnostic criteria and role of glycated haemoglobin (HbA1c)
    Fahmy W Hanna, Christopher J Duff, Ann Shelley-Hitchen, Ellen Hodgson, Anthony A Fryer
    Clinical Medicine.2017; 17(2): 108.     CrossRef
  • Utility of Glycated Haemoglobin in Gestational Diabetes Mellitus: Present and Future
    Rajesh Rajput, Deepak Jain
    EMJ Diabetes.2016; : 84.     CrossRef
The Effect of Tribbles-Related Protein 3 on ER Stress-Suppressed Insulin Gene Expression in INS-1 Cells
Young Yun Jang, Nam Keong Kim, Mi Kyung Kim, Ho Young Lee, Sang Jin Kim, Hye Soon Kim, Hye-Young Seo, In Kyu Lee, Keun Gyu Park
Korean Diabetes J. 2010;34(5):312-319.   Published online October 31, 2010
DOI: https://doi.org/10.4093/kdj.2010.34.5.312
  • 3,513 View
  • 32 Download
  • 5 Crossref
AbstractAbstract PDFPubReader   
Background

The highly developed endoplasmic reticulum (ER) structure in pancreatic beta cells is heavily involved in insulin biosynthesis. Thus, any perturbation in ER function inevitably impacts insulin biosynthesis. Recent studies showed that the expression of tribbles-related protein 3 (TRB3), a mammalian homolog of Drosophilia tribbles, in various cell types is induced by ER stress. Here, we examined whether ER stress induces TRB3 expression in INS-1 cells and found that TRB3 mediates ER stress-induced suppression of insulin gene expression.

Methods

The effects of tunicamycin and thapsigargin on insulin and TRB3 expression in INS-1 cells were measured by Northern and Western blot analysis, respectively. The effects of adenovirus-mediated overexpression of TRB3 on insulin, PDX-1 and MafA gene expression in INS-1 cells were measured by Northern blot analysis. The effect of TRB3 on insulin promoter was measured by transient transfection study with constructs of human insulin promoter.

Results

The treatment of INS-1 cells with tunicamycin and thapsigargin decreased insulin mRNA expression, but increased TRB3 protein expression. Adenovirus-mediated overexpression of TRB3 decreased insulin gene expression in a dose-dependent manner. A transient transfection study showed that TRB3 inhibited insulin promoter activity, suggesting that TRB3 inhibited insulin gene expression at transcriptional level. Adenovirus-mediated overexpression of TRB3 also decreased PDX-1 mRNA expression, but did not influence MafA mRNA expression.

Conclusions

This study showed that ER stress induced TRB3 expression, but decreased both insulin and PDX-1 gene expression in INS-1 cells. Our data suggest that TRB3 plays an important role in ER stress-induced beta cell dysfunction.

Citations

Citations to this article as recorded by  
  • Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface
    Max Brown, Samantha Dainty, Natalie Strudwick, Adina D. Mihai, Jamie N. Watson, Robina Dendooven, Adrienne W. Paton, James C. Paton, Martin Schröder, James Arthur Olzmann
    Molecular Biology of the Cell.2020; 31(23): 2597.     CrossRef
  • PTB and TIAR binding to insulin mRNA 3′- and 5′UTRs; implications for insulin biosynthesis and messenger stability
    Rikard G. Fred, Syrina Mehrabi, Christopher M. Adams, Nils Welsh
    Heliyon.2016; 2(9): e00159.     CrossRef
  • Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport
    Stefan Norlin, Vishal S. Parekh, Peter Naredi, Helena Edlund
    Diabetes.2016; 65(1): 110.     CrossRef
  • Role of the Unfolded Protein Response inβCell Compensation and Failure during Diabetes
    Nabil Rabhi, Elisabet Salas, Philippe Froguel, Jean-Sébastien Annicotte
    Journal of Diabetes Research.2014; 2014: 1.     CrossRef
  • Endoplasmic Reticulum Stress and Insulin Biosynthesis: A Review
    Mi-Kyung Kim, Hye-Soon Kim, In-Kyu Lee, Keun-Gyu Park
    Experimental Diabetes Research.2012; 2012: 1.     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal