- Basic and Translational Research
- Serpina3c Mitigates Adipose Tissue Inflammation by Inhibiting the HIF1α-Mediated Endoplasmic Reticulum Overoxidation in Adipocytes
-
Yu Jiang, Jia-Qi Guo, Ya Wu, Peng Zheng, Shao-Fan Wang, Meng-Chen Yang, Gen-Shan Ma, Yu-Yu Yao
-
Received July 31, 2024 Accepted February 25, 2025 Published online May 22, 2025
-
DOI: https://doi.org/10.4093/dmj.2024.0441
[Epub ahead of print]
-
-
Abstract
PDF Supplementary Material PubReader ePub
- Background
Visceral white adipose tissue (vWAT) inflammation is a critical pathology of obesity-caused heart damage and is closely associated with adipocyte endoplasmic reticulum (ER) dysfunction. Serine (or cysteine) peptidase inhibitor, clade A, member 3C (Serpina3c) has been identified as an adipokine with anti-vWAT inflammatory effects. However, it remains unclear whether Serpina3c deficiency promotion of vWAT inflammation involves adipocyte ER dysfunction and whether it further contributes to heart damage in obesity.
Methods Wild type and Serpina3c knockout (Serpina3c–/–) mice were fed a high-fat diet (HFD) for 12 weeks. An adeno-associated virus (AAV) was injected locally into epididymal white adipose tissue (eWAT) of Serpina3c–/– mice to induce eWAT-adipocyte- specific overexpression of Serpina3c (AAV-Serpina3c) or knockdown of hypoxia-inducible factor 1α (AAV-shHIF1α). In vitro experiments were performed in 3T3-L1 adipocytes.
Results Serpina3c–/– mice exhibited more severe eWAT, serum and heart inflammation after HFD feeding. Consistently, these adverse phenotypes were mitigated in AAV-Serpina3c and AAV-shHIF1α mice. Mechanistically, ER oxidoreductase 1α (Ero1α) and protein disulfide isomerase (PDI) family members PDIA3 and PDIA4 were found to be target genes of HIF1α. In the obese mice, Serpina3c deficiency caused adipocyte more hypertrophy, and activated HIF1α-Ero1α/PDI mediated ER overoxidation and ER stress in eWAT. Subsequently, this led to increased adipocyte apoptosis and chemokine production and decreased adiponectin expression, which promoted macrophage infiltration and M1 polarization in eWAT, thus exacerbating eWAT inflammation and ultimately facilitating serum and distal heart inflammation.
Conclusion These findings indicate that Serpina3c is a significant regulator of adipocyte ER redox homeostasis, thus highlighting Serpina3c as a potential therapeutic target for obesity-related eWAT inflammation and heart damage.
|