Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Author index

Page Path
HOME > Browse > Author index
Search
Jaetaek Kim  (Kim J) 4 Articles
Basic Research
Application of Animal Models in Diabetic Cardiomyopathy
Wang-Soo Lee, Jaetaek Kim
Diabetes Metab J. 2021;45(2):129-145.   Published online March 25, 2021
DOI: https://doi.org/10.4093/dmj.2020.0285
  • 9,117 View
  • 332 Download
  • 9 Web of Science
  • 14 Crossref
Graphical AbstractGraphical Abstract AbstractAbstract PDFPubReader   ePub   
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.

Citations

Citations to this article as recorded by  
  • Chitosan Versus Dapagliflozin in a Diabetic Cardiomyopathy Mouse Model
    Georgică Târtea, Aurel Popa-Wagner, Veronica Sfredel, Smaranda Ioana Mitran, Alexandra Oltea Dan, Anca-Maria Țucă, Alexandra Nicoleta Preda, Victor Raicea, Eugen Țieranu, Dragoș Cozma, Radu Vătășescu
    International Journal of Molecular Sciences.2024; 25(4): 2118.     CrossRef
  • Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets
    Wanlin Ye, Kun Han, Maodi Xie, Sheyu Li, Guo Chen, Yanyan Wang, Tao Li
    Chinese Medical Journal.2024;[Epub]     CrossRef
  • Liraglutide Attenuates Diabetic Cardiomyopathy via the ILK/PI3K/AKT/PTEN Signaling Pathway in Rats with Streptozotocin-Induced Type 2 Diabetes Mellitus
    Shatha M. Alobaid, Rahaf M. Alshahrani, Asma S. Alonazi, Nawal M. Alrasheed, Maha A. Alamin, Tahani K. Alshammari, Anfal F. Bin Dayel, Doaa M. Elnagar, Rana R. Alotaibi, Lama A. Almuthnabi, Dalia H. Almasud, Shahad E. Al-Ammar, Shahad O. Almadhi, Reema A.
    Pharmaceuticals.2024; 17(3): 374.     CrossRef
  • An Overview of Diabetic Cardiomyopathy
    Abdul Quaiyoom, Ranjeet Kumar
    Current Diabetes Reviews.2024;[Epub]     CrossRef
  • Evaluation and Management of Patients With Diabetes and Heart Failure: A Korean Diabetes Association and Korean Society of Heart Failure Consensus Statement
    Kyu-Sun Lee, Junghyun Noh, Seong-Mi Park, Kyung Mook Choi, Seok-Min Kang, Kyu-Chang Won, Hyun-Jai Cho, Min Kyong Moon
    International Journal of Heart Failure.2023; 5(1): 1.     CrossRef
  • Evaluation and Management of Patients with Diabetes and Heart Failure: A Korean Diabetes Association and Korean Society of Heart Failure Consensus Statement
    Kyu-Sun Lee, Junghyun Noh, Seong-Mi Park, Kyung Mook Choi, Seok-Min Kang, Kyu-Chang Won, Hyun-Jai Cho, Min Kyong Moon
    Diabetes & Metabolism Journal.2023; 47(1): 10.     CrossRef
  • Machine learning for spatial stratification of progressive cardiovascular dysfunction in a murine model of type 2 diabetes mellitus
    Andrya J. Durr, Anna S. Korol, Quincy A. Hathaway, Amina Kunovac, Andrew D. Taylor, Saira Rizwan, Mark V. Pinti, John M. Hollander, Yoshihiro Fukumoto
    PLOS ONE.2023; 18(5): e0285512.     CrossRef
  • Hyperglycemic memory in diabetic cardiomyopathy
    Jiabing Zhan, Chen Chen, Dao Wen Wang, Huaping Li
    Frontiers of Medicine.2022; 16(1): 25.     CrossRef
  • Murine Models of Obesity
    Tânia Martins, Catarina Castro-Ribeiro, Sílvia Lemos, Tiago Ferreira, Elisabete Nascimento-Gonçalves, Eduardo Rosa, Paula Alexandra Oliveira, Luís Miguel Antunes
    Obesities.2022; 2(2): 127.     CrossRef
  • The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy
    Jiayu Li, Jingye Li, Yijun Chen, Wenyu Hu, Xuhe Gong, Hui Qiu, Hui Chen, Yanguo Xin, Hongwei Li, Tao Li
    Oxidative Medicine and Cellular Longevity.2022; 2022: 1.     CrossRef
  • Guidelines on models of diabetic heart disease
    Lisa C. Heather, Anne D. Hafstad, Ganesh V. Halade, Romain Harmancey, Kimberley M. Mellor, Paras K. Mishra, Erin E. Mulvihill, Miranda Nabben, Michinari Nakamura, Oliver J. Rider, Matthieu Ruiz, Adam R. Wende, John R. Ussher
    American Journal of Physiology-Heart and Circulatory Physiology.2022; 323(1): H176.     CrossRef
  • Extracellular vesicle therapy for non-ischemic heart failure: A systematic review of preclinical studies
    Ramana Vaka, Sophie Van Remortel, Valentina Ly, Darryl R. Davis
    Extracellular Vesicle.2022; 1: 100009.     CrossRef
  • Effect of a Six-week Endurance Exercise Program and Empagliflozin Consumption on Some Structural and Functional Indices of the Heart in Male Diabetic Rats
    Eftekhar Mohammadi, Mohammad Fathi, Farzaneh Chehel Cheraghi, Afshin Nazari
    journal of ilam university of medical sciences.2022; 30(3): 1.     CrossRef
  • Cardiac Phosphodiesterases Are Differentially Increased in Diabetic Cardiomyopathy
    Rita Hanna, Wared Nour-Eldine, Youakim Saliba, Carole Dagher-Hamalian, Pia Hachem, Pamela Abou-Khalil, Delphine Mika, Audrey Varin, Magali Samia El Hayek, Laëtitia Pereira, Nassim Farès, Grégoire Vandecasteele, Aniella Abi-Gerges
    Life Sciences.2021; 283: 119857.     CrossRef
The Effects of Green Tea on Obesity and Type 2 Diabetes
Hyun Min Kim, Jaetaek Kim
Diabetes Metab J. 2013;37(3):173-175.   Published online June 14, 2013
DOI: https://doi.org/10.4093/dmj.2013.37.3.173
  • 5,900 View
  • 63 Download
  • 20 Crossref
PDFPubReader   

Citations

Citations to this article as recorded by  
  • Effects of green tea and roasted green tea on human responses
    Chie Kurosaka, Chika Tagata, Sae Nakagawa, Makoto Kobayashi, Shinji Miyake
    Scientific Reports.2024;[Epub]     CrossRef
  • The effect of EGCG/tyrosol-loaded chitosan/lecithin nanoparticles on hyperglycemia and hepatic function in streptozotocin-induced diabetic mice
    Ali Es-haghi, Mozhgan Soltani, Masoud Homayouni Tabrizi, Maryam Karimi Noghondar, Nilofar Khatamian, Niloofar Barati Naeeni, Matin Kharaghani
    International Journal of Biological Macromolecules.2024; : 131496.     CrossRef
  • The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study
    Tarek Atia, Hader I. Sakr, Ahmed A. Damanhory, Karim Moawad, Moustfa Alsawy
    Archives of Physiology and Biochemistry.2023; 129(1): 168.     CrossRef
  • Effect of boron applications on boron concentration of the leaves under the harvest base of tea plant
    Meriç Balcı, Süleyman Taban
    Journal of Plant Nutrition.2023; 46(2): 184.     CrossRef
  • Bioactive dietary components—Anti‐obesity effects related to energy metabolism and inflammation
    Caroline Bertoncini‐Silva, Jean‐Marc Zingg, Priscila Giacomo Fassini, Vivian Marques Miguel Suen
    BioFactors.2023; 49(2): 297.     CrossRef
  • Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways
    Mohamed A. Salem, Nora M. Aborehab, Mai M. Abdelhafez, Sameh H. Ismail, Nadine W. Maurice, May A. Azzam, Saleh Alseekh, Alisdair R. Fernie, Maha M. Salama, Shahira M. Ezzat
    Metabolites.2023; 13(7): 871.     CrossRef
  • Therapeutic Properties of Green Tea: A Review
    Sonia Ratnani, Sarika Malik
    Journal of Multidisciplinary Applied Natural Science.2022; 2(2): 90.     CrossRef
  • Cross-sectional associations between the types/amounts of beverages consumed and the glycemia status: The Japan Public Health Center-based Prospective Diabetes study
    Yusuke Kabeya, Atsushi Goto, Masayuki Kato, Yoshihiko Takahashi, Akihiro Isogawa, Yumi Matsushita, Tetsuya Mizoue, Manami Inoue, Norie Sawada, Takashi Kadowaki, Shoichiro Tsugane, Mitsuhiko Noda
    Metabolism Open.2022; 14: 100185.     CrossRef
  • The beneficial therapeutic effects of plant‐derived natural products for the treatment of sarcopenia
    Mohammad Bagherniya, Atena Mahdavi, Nafiseh Shokri‐Mashhadi, Maciej Banach, Stephan Von Haehling, Thomas P. Johnston, Amirhossein Sahebkar
    Journal of Cachexia, Sarcopenia and Muscle.2022; 13(6): 2772.     CrossRef
  • Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus
    Jana Blahova, Monika Martiniakova, Martina Babikova, Veronika Kovacova, Vladimira Mondockova, Radoslav Omelka
    Pharmaceuticals.2021; 14(8): 806.     CrossRef
  • Obesity treatment by epigallocatechin‐3‐gallate−regulated bile acid signaling and its enrichedAkkermansia muciniphila
    Lili Sheng, Prasant Kumar Jena, Hui‐Xin Liu, Ying Hu, Nidhi Nagar, Denise N. Bronner, Matthew L. Settles, Andreas J. Baümler, Yu‐Jui Yvonne Wan
    The FASEB Journal.2018; 32(12): 6371.     CrossRef
  • Protective effects of black tea-TV 25 on the cognitive impairments and some peripheral immune responses in intracerebroventricular colchicine injected rats
    Susmita Sil, Kaushik Bhandari, Pritha Gupta, Rupsa Ghosh, Analava Mitra, Bijoy Chandra Ghosh, Tusharkanti Ghosh
    Oriental Pharmacy and Experimental Medicine.2018; 18(1): 39.     CrossRef
  • Effects of green tea extract on overweight and obese women with high levels of low density-lipoprotein-cholesterol (LDL-C): a randomised, double-blind, and cross-over placebo-controlled clinical trial
    Lin-Huang Huang, Chia-Yu Liu, Li-Yu Wang, Chien-Jung Huang, Chung-Hua Hsu
    BMC Complementary and Alternative Medicine.2018;[Epub]     CrossRef
  • Effect of boron treatments on boron distribution and fresh leaf yield of tea plant
    Meriç BALCI, Süleyman TABAN
    International Journal of Agriculture Environment and Food Sciences.2018; 2(3): 74.     CrossRef
  • Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice
    Lynn Cialdella-Kam, Sujoy Ghosh, Mary Meaney, Amy Knab, R. Shanely, David Nieman
    Nutrients.2017; 9(7): 773.     CrossRef
  • Diabetes and Alzheimer’s Disease: Can Tea Phytochemicals Play a Role in Prevention?
    Warnakulasuriya M.A.D.B. Fernando, Geeshani Somaratne, Kathryn G. Goozee, Shehan Williams, Harjinder Singh, Ralph N. Martins
    Journal of Alzheimer's Disease.2017; 59(2): 481.     CrossRef
  • Hepatic transcriptome implications for palm fruit juice deterrence of type 2 diabetes mellitus in young male Nile rats
    Soon-Sen Leow, Julia Bolsinger, Andrzej Pronczuk, K. C. Hayes, Ravigadevi Sambanthamurthi
    Genes & Nutrition.2016;[Epub]     CrossRef
  • Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial
    I-Ju Chen, Chia-Yu Liu, Jung-Peng Chiu, Chung-Hua Hsu
    Clinical Nutrition.2016; 35(3): 592.     CrossRef
  • Plants and herbs for therapy of diabetes
    Laurentius A. Pramono
    Medical Journal of Indonesia.2015; 24(2): 67.     CrossRef
  • Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach
    Shoude Zhang, Lei Shan, Qiao Li, Xia Wang, Shiliang Li, Yuan Zhang, Jianjun Fu, Xiaofeng Liu, Honglin Li, Weidong Zhang
    Evidence-Based Complementary and Alternative Medicine.2014; 2014: 1.     CrossRef
Nutritional Status and Cardiac Autophagy
Jihyun Ahn, Jaetaek Kim
Diabetes Metab J. 2013;37(1):30-35.   Published online February 15, 2013
DOI: https://doi.org/10.4093/dmj.2013.37.1.30
  • 3,554 View
  • 34 Download
  • 16 Crossref
AbstractAbstract PDFPubReader   

Autophagy is necessary for the degradation of long-lasting proteins and nonfunctional organelles, and is activated to promote cellular survival. However, overactivation of autophagy may deplete essential molecules and organelles responsible for cellular survival. Lifelong calorie restriction by 40% has been shown to increase the cardiac expression of autophagic markers, which suggests that it may have a cardioprotective effect by decreasing oxidative damage brought on by aging and cardiovascular diseases. Although cardiac autophagy is critical to regulating protein quality and maintaining cellular function and survival, increased or excessive autophagy may have deleterious effects on the heart under some circumstances, including pressure overload-induced heart failure. The importance of autophagy has been shown in nutrient supply and preservation of energy in times of limitation, such as ischemia. Some studies have suggested that a transition from obesity to metabolic syndrome may involve progressive changes in myocardial inflammation, mitochondrial dysfunction, fibrosis, apoptosis, and myocardial autophagy.

Citations

Citations to this article as recorded by  
  • The Newly Proposed Mechanism of Cardiomyocyte Protection of Carvedilol- Anti-Apoptosis Pattern of Carvedilol in Anoxia by Inducing Autophagy Partly through the AMPK/mTOR Pathway
    Jingru Li, Chaozhong Li, Guihu Sun, Longjun Li, Yongli Zeng, Huawei Wang, Xinyu Wu, Ping Yang, Yunzhu Peng, Luqiao Wang
    Letters in Drug Design & Discovery.2023; 20(10): 1600.     CrossRef
  • Mitophagy for cardioprotection
    Allen Sam Titus, Eun-Ah Sung, Daniela Zablocki, Junichi Sadoshima
    Basic Research in Cardiology.2023;[Epub]     CrossRef
  • Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models
    Minru Liao, Qiang Xie, Yuqian Zhao, Chengcan Yang, Congcong Lin, Guan Wang, Bo Liu, Lingjuan Zhu
    Pharmacological Research.2022; 176: 106077.     CrossRef
  • How Can Malnutrition Affect Autophagy in Chronic Heart Failure? Focus and Perspectives
    Giovanni Corsetti, Evasio Pasini, Claudia Romano, Carol Chen-Scarabelli, Tiziano M. Scarabelli, Vincenzo Flati, Louis Saravolatz, Francesco S. Dioguardi
    International Journal of Molecular Sciences.2021; 22(7): 3332.     CrossRef
  • Ischemia reperfusion injury induces pyroptosis and mediates injury in steatotic liver thorough Caspase 1 activation
    Vasantha L. Kolachala, Chrissy Lopez, Ming Shen, Dmitry Shayakhmetov, Nitika Arora Gupta
    Apoptosis.2021; 26(5-6): 361.     CrossRef
  • Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells
    Yunchun Kuang, Bo Hu, Ge Feng, Mingli Xiang, Yuejia Deng, Minmin Tan, Jie Li, Jinlin Song
    Biogerontology.2020; 21(1): 13.     CrossRef
  • Protective effects of salvianolic acid B against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms
    Shan Gao, Shiqin Li, Qin Li, Fuyong Zhang, Mengqi Sun, Zilin Wan, Shurong Wang
    International Journal of Molecular Medicine.2019;[Epub]     CrossRef
  • Moderate calorie restriction attenuates age‑associated alterations and improves cardiac function by increasing SIRT1 and SIRT3 expression
    Wei Yu, Jinjin Qin, Chunjuan Chen, Yucai Fu, Wei Wang
    Molecular Medicine Reports.2018;[Epub]     CrossRef
  • Cardiac fibrosis in the ageing heart: Contributors and mechanisms
    Lu Lu, Jingbin Guo, Yue Hua, Kevin Huang, Ruth Magaye, Jake Cornell, Darren J. Kelly, Christopher Reid, Danny Liew, Yingchun Zhou, Aihua Chen, Wei Xiao, Qiang Fu, Bing Hui Wang
    Clinical and Experimental Pharmacology and Physiology.2017; 44(S1): 55.     CrossRef
  • MicroRNA-199a acts as a potential suppressor of cardiomyocyte autophagy through targeting Hspa5
    Liang Chen, Fei-Yu Wang, Zhen-Yu Zeng, Ling Cui, Jian Shen, Xiao-Wei Song, Pan Li, Xian-Xian Zhao, Yong-Wen Qin
    Oncotarget.2017; 8(38): 63825.     CrossRef
  • Protective effects of luteolin-7-O-glucoside against starvation-induced injury through upregulation of autophagy in H9c2 Cells
    Hong Yao, Lichun Zhou, Linlin Tang, Yanhui Guan, Shang Chen, Yu Zhang, Xiuzhen Han
    BioScience Trends.2017; 11(5): 557.     CrossRef
  • Hongjingtian Injection Attenuates Myocardial Oxidative Damage via Promoting Autophagy and Inhibiting Apoptosis
    Shujing Zhang, Ling Zhang, Han Zhang, Guanwei Fan, Jiuwen Qiu, Zongbao Fang, Haibo Wu, Yi Wang, Xiaoping Zhao
    Oxidative Medicine and Cellular Longevity.2017; 2017: 1.     CrossRef
  • Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts
    S Ghavami, R H Cunnington, S Gupta, B Yeganeh, K L Filomeno, D H Freed, S Chen, T Klonisch, A J Halayko, E Ambrose, R Singal, I M C Dixon
    Cell Death & Disease.2015; 6(3): e1696.     CrossRef
  • The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie‐restricted mouse heart
    Julia Schipke, Ewgenija Banmann, Sandeep Nikam, Robert Voswinckel, Karin Kohlstedt, Annemarieke E. Loot, Ingrid Fleming, Christian Mühlfeld
    Journal of Anatomy.2014; 225(5): 539.     CrossRef
  • Glycated Albumin Causes Pancreatic β-Cells Dysfunction Through Autophagy Dysfunction
    Young Mi Song, Sun Ok Song, Young-Hye You, Kun-Ho Yoon, Eun Seok Kang, Bong Soo Cha, Hyun Chul Lee, Ji-Won Kim, Byung-Wan Lee
    Endocrinology.2013; 154(8): 2626.     CrossRef
  • Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes
    Stephen C. Kolwicz, Suneet Purohit, Rong Tian
    Circulation Research.2013; 113(5): 603.     CrossRef
Letter: Higher Glycated Hemoglobin Level Is Associated with Increased Risk of Ischemic Stroke in Non-Diabetic Korean Male Adults (Diabetes Metab J 2011;35:551-7)
Seok Hong Lee, Jihyun Ahn, Jaetaek Kim
Diabetes Metab J. 2012;36(1):79-80.   Published online February 17, 2012
DOI: https://doi.org/10.4093/dmj.2012.36.1.79
  • 2,853 View
  • 23 Download
PDFPubReader   

Diabetes Metab J : Diabetes & Metabolism Journal