- The Association of Aldose Reductase Gene Polymorphisms with Neuropathy in Patients with Type 2 Diabetes.
-
In Kyong Jeong, Kyong Soo Park, Min Kyong Moon, Jae Hyeon Kim, Chan Soo Shin, Seong Yeon Kim, Hong Kyu Lee
-
Korean Diabetes J. 2007;31(3):274-283. Published online May 1, 2007
-
DOI: https://doi.org/10.4093/jkda.2007.31.3.274
-
-
2,131
View
-
18
Download
-
1
Crossref
-
Abstract
PDF
- BACKGROUND
Previous studies have suggested that polymorphisms in and around the aldose reductase (AR) gene are associated with the development of diabetic microvascular disease. This study explored the hypothesis that the polymorphisms of the (A-C)n dinucleotide repeat sequence, located at 2.1 kilobase (kb) upstream of the transcription start site of AR gene, modulate the risk of diabetic neuropathy (DN). METHODS: 66 patients with DN, 30 without microvascular complications (MC) after 20 years of diabetes, and 87 normal healthy controls were studied. To test highly polymorphic microsatellite marker 2.1 kb upstream of the initiation site of the AR gene, we performed polymerase chain reaction using the primer labeled with fluorescent dye and GeneScan by ABI prism 377 automated DNA sequencer and ABI Genotyper software 2.0. RESULTS: Seven alleles (Z-6, Z-4, Z-2, Z, Z+2, Z+4 and Z+6) were identified. Z-2 allele was more frequently observed in patients with DN (77.3%) than in those without MC (43.3%, P = 0.007). The subgroup of patients who developed DN within 5 years after the diagnosis of diabetes also had higher frequency of Z-2 allele (91.7%) compared to those without MC (43.3%, P = 0.028). On the contrary, Z+6 allele tended to be more frequent in patients without MC (10.0%) than in those with DN (0%, P = 0.063). CONCLUSION: These results support the hypothesis that environmental-genetic interactions may modulate the risk of neuropathy in patients with diabetes. Particularly, the Z-2 allele, in the presence of diabetes, may be associated with the development of DN.
-
Citations
Citations to this article as recorded by
- The Association between Serum GGT Concentration and Diabetic Peripheral Polyneuropathy in Type 2 Diabetic Patients
Ho Chan Cho Korean Diabetes Journal.2010; 34(2): 111. CrossRef
- Glutathion S-Transferase M1 Gene Polymorphism is Associated with Type 2 Diabetic Nephropathy.
-
Jae Hyeon Kim, Min Kyong Moon, Sang Wan Kim, Hyoung Doo Shin, Young Hwan Hwang, Curie Ahn, Hak Cheol Jang, Kyong Soo Park, Seong Yeon Kim, Hong Kyu Lee
-
Korean Diabetes J. 2005;29(4):315-321. Published online July 1, 2005
-
-
-
Abstract
PDF
- BACKGROUND
Oxidative stress may be a determinant of the development of diabetic nephropathy. Glutathione S-transferases(GST) can work as an endogenous antioxidant to protect cells from oxidative stress. Homozygous deletion of the mu and theta subclasses of GST(GST-M1 and GST-T1), and Val105Ile polymorphism of the pi subclass of GST(GST-P1) are associated with antioxidant enzyme activity. In this study, whether the Val105Ile of GST-P1, null genotype of GST-M1 and GST-T1 are associated with type 2 diabetic nephropathy were examined. METHODS: These GST subclasses were genotyped in 361 type 2 diabetic patients with retinopathy; the subjects were divided into two groups, those with an end stage renal disease(ESRD)(the case group n=177) and those(the control group, n=184) showing no signs of renal involvement. RESULTS: The frequencies of the GST-P1 Ile105Val and GST-T1 null genotypes were no different between the cases and controls. However, the frequency of the GST-M1 null genotype was significantly higher in the cases than the controls(61.7% vs. 51.1%, chi-square=4.09, P=0.043), which was still significant after correction for age, sex and duration of diabetes (P= 0.044). In addition, the GST-M1 null genotype showed an increased frequency between the controls and the cases with long and short durations of type 2 diabetes until the onset of ESRD(51.1, 58.9 and 65.5%, respectively; chi-square for trend=5.12, P=0.024). CONCLUSION: This is the first study to suggest that the GST-M1 gene polymorphism might contribute to the development of ESRD in type 2 diabetic patients.
|