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Highlights
 • OCM is driven by the folate cycle, the Hcy-methionine cycle, and the transsulfuration pathway.
 • Low OCM nutrients result in fewer methyl groups, HHcy, and less antioxidation.
 • HHcy and reduced antioxidation lead to oxidative stress and systemic inflammation.
 • Low methyl group supply modifies DNA methylation of genes in glycolipid metabolism.
 • These changes may cause β-cell dysfunction, IR, glucose intolerance, and DM development.
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Diabetes mellitus (DM) affects about 9.3% of the population globally. Hyperhomocysteinemia (HHcy) has been implicated in the 
pathogenesis of DM, owing to its promotion of oxidative stress, β-cell dysfunction, and insulin resistance. HHcy can result from 
low status of one-carbon metabolism (OCM) nutrients (e.g., folate, choline, betaine, vitamin B6, B12), which work together to de-
grade homocysteine by methylation. The etiology of HHcy may also involve genetic variation encoding key enzymes in OCM. 
This review aimed to provide an overview of the existing literature assessing the link between OCM nutrients status, related ge-
netic factors, and incident DM. We also discussed possible mechanisms underlying the role of OCM in DM development and 
provided recommendations for future research and practice. Even though the available evidence remains inconsistent, some stud-
ies support the potential beneficial effects of intakes or blood levels of OCM nutrients on DM development. Moreover, certain 
variants in OCM-related genes may influence metabolic handling of methyl-donors and presumably incidental DM. Future stud-
ies are warranted to establish the causal inference between OCM and DM and examine the interaction of OCM nutrients and ge-
netic factors with DM development, which will inform the personalized recommendations for OCM nutrients intakes on DM 
prevention.
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INTRODUCTION

Diabetes mellitus (DM) affects approximately 9.3% (463 million 
people) of the population worldwide in 2019 with its prevalence 
projected to reach 10.2% (578 million) by 2030 and 10.9% (700 
million) by 2045 [1]. DM is associated with increased risk of 
numerous chronic diseases, such as cardiovascular diseases 
(CVD) and diabetic retinopathy [2,3]. Thus, identifying poten-
tially modifiable risk factors for DM may help develop more ef-
fective strategies for its prevention. 

Hyperhomocysteinemia (HHcy) has emerged as a risk bio-
marker for type 2 diabetes mellitus (T2DM) [4]. HHcy was evi-

denced to promote oxidative stress, β-cell dysfunction, and in-
sulin resistance (IR), which contributes to DM pathology [4-6]. 
Growing evidence suggests that HHcy can be due to the low 
status of one-carbon metabolism (OCM) nutrients [7-9]. OCM 
is a metabolic network that involves biochemical compounds 
to regulate nucleic acid synthesis and methylation reactions. 
Homocysteine (Hcy) in this OCM network can be either me-
tabolized into cysteine or recycled into methionine with the aid 
of a group of OCM nutrients, which act as prerequisite sub-
strate donors (folate, choline, betaine, and methionine) or es-
sential coenzymes (vitamin B2, B6, B12, and zinc) [8,9]. Data 
directly linking the intake or circulating levels of these OCM 
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nutrients to incident DM are sparse and results remain incon-
sistent [10-22]. For example, higher choline intake was associ-
ated with lower T2DM risk among men in eastern Finland [14], 
whereas dietary choline or betaine intake was not associated 
with risk of T2DM among the United States Black or White 
men [15]. Moreover, the etiology of HHcy may involve genetic 
variation encoding key enzymes in OCM, which may contrib-
ute to DM development [5,6]. A meta-analysis incorporating 
68 studies indicated that methylenetetrahydrofolate reductase 
(MTHFR) 677C>T polymorphism was correlated with T2DM 
in Asian populations, but not in White and Black populations 
[8]. Nevertheless, knowledge regarding the role of OCM in DM 
development remains in its infancy. Further investigations are 
warranted to better understand the role of OCM nutrients in 
the etiology of DM prevention and treatment.

The present review aims to provide an overview of the exist-
ing literature assessing the relationships between OCM nutri-

ents status as well as related genetic variation and risk of DM in 
the context of DM pathology. We will focus on understanding 
the hypothesized mechanism of OCM nutrients action on DM, 
limitations of the previous studies, and implications for dietetic 
practice and future research.

ONE-CARBON METABOLISM 

OCM is a metabolic network driven by three interrelated met-
abolic pathways, which include the folate cycle, the Hcy-me-
thionine cycle, and the transsulfuration pathway [2]. The com-
plex set of biochemical reactions of OCM contributes to the 
generation or utilization of methyl groups (CH3) [2,3].

As shown in Fig. 1, folic acid (FA) from dietary intake can 
serve as a precursor to dihydrofolate (DHF) that is converted to 
tetrahydrofolate (THF) via dihydrofolate reductase (DHFR). 
DHF can also be converted to 5,10-methylenetetrahydrofolate 

Fig. 1. One-carbon metabolism. SAM, S-adenosylmethionine; PE, phosphatidylethanolamine; ChAT, choline acetyltransferase; 
DMG, dimethylglycine; MT, methyltransferase; PEMT, phosphatidylethanolamine N-methyltransferase; CK, choline kinase; 
CHDH, choline dehydrogenase; BHMT, betaine-homocysteine S-methyltransferase; Zn, zinc; SAH, S-adenosylhomocysteine; 
PC, phosphatidylcholine; CPT, cholinephosphotransferase; CDP, cytidine diphosphate; Choline-P, phosphocholine; CT, cytidyl-
yltransferase; BADH, betaine aldehyde dehydrogenase; CBS, cystathionine β-synthase; CTH, cystathionine γ-lyase; THF, tetrahy-
drofolate; DHFR, dihydrofolate reductase; DHF, dihydrofolate; MS, methionine synthase; 10-formyl THF, 10-formyl-tetrahydro-
folate; SHMT, serine hydroxymethyltransferase; dTMP, thymidine monophosphate; TS, thymidylate synthase; 5-MTHF, 5-meth-
yl-tetrahydrofolate; MTHFR, methylenetetrahydrofolate reductase; dUMP, deoxyuridine monophosphate; 5,10-MTHF, 
5,10-methylenetetrahydrofolate.

Homocysteine-methionine 
cycle

Transsulfuration
pathway

Folate cycle
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(5,10-MTHF) via thymidylate synthase (TS), which is used for 
thymidylate synthesis. Conversion to 5,10-MTHF from THF 
requires serine via serine hydroxymethyltransferase (SHMT) 
with vitamin B6 as a cofactor. Methylenetetrahydrofolate dehy-
drogenase (MTHFD) catalyzes 5,10-MTHF to 10-formyltetra-
hydrofolate (10-formyl THF), which is used for purine synthe-
sis. Conversion from 5,10-MTHF to 5-methyltetrahydrofolate 
(5-MTHF) requires MTHFR with vitamin B2 as a cofactor. Fo-
late, the natural form from diet, can also contribute to 5-MTHF 
donating the methyl groups to Hcy to generate methionine and 
THF via methionine synthase (MS) with vitamin B12 and zinc 
as a cofactor [2-6].

In addition, choline and betaine act as other methyl-donors 
that can be supplied from diet and endogenously synthesized. 
Choline as an essential nutrient can be acetylated by choline 
acetyltransferase to produce acetylcholine, a pivotal neurotrans-
mitter [4]. Also, choline can be phosphorylated by choline ki-
nase to be converted to phosphocholine, and then to cytidine 
diphosphate-choline and phosphatidylcholine (PC) by cytidyl-
yltransferase (CT) and cholinephosphotransferase, sequential-
ly. PC serves as an essential constituent of cell and mitochon-
drial membranes as well as a major component of lipoproteins 
[2-4]. In addition, choline can be endogenously synthesized 
through the conversion of phosphatidylethanolamine to PC, 
which is catalyzed by phosphatidylethanolamine N-methyl-
transferase (PEMT) [3]. Moreover, choline dehydrogenase cat-
alyzes choline to synthesize betaine that can be oxidized by be-
taine-homocysteine S-methyltransferase with zinc as a cofac-
tor to methylate Hcy to methionine. Then, methionine passes 
the methyl group to S-adenosylmethionine (SAM), which serves 
as a universal methyl-donor contributing to methylation mod-
ification of DNA, RNA, and protein [2-4]; After that, SAM is 
converted to S-adenosylhomocysteine and deadenosylated to 
produce Hcy [20]. If there is abundant methionine, the trans-
sulfuration pathway will become active, by which Hcy reacts 
with serine to form cystathionine by cystathionine β-synthase 
with vitamin B6 as a cofactor. Cystathionine is further pro-
cessed by cystathionine γ-lyase with vitamin B6 as a cofactor 
to generate cysteine, which is used to produce taurine, gluta-
thione (GSH), and other protein [2-4]. It has been evidenced 
that deficiency of the OCM nutrients (e.g., folate, choline, be-
taine, vitamin B6 and B12) and reduced activity of the key en-
zymes in OCM due to genetic variation (e.g., MS 2756 G>A, 
MTHFR 677C>T) contribute to HHcy, thus impairing the re-
methylation and/or transsulfuration pathways [5-9,20].

OCM NUTRIENTS AND RISK OF DM

Observational studies that directly related OCM nutrients to 
incident DM were limited and results remained contradictory 
(Table 1). One cross-sectional study reported an inverse rela-
tionship between serum folate level and DM prevalence among 
Chinese adults [20]. Consistently, a cross-sectional study dem-
onstrated that serum choline or betaine was inversely correlat-
ed with fasting glucose levels and IR index in Canadian adults 
[18]. Another cross-sectional study conducted in Chinese 
adults showed that higher dietary consumptions of vitamin B6 
and choline, but not folate, vitamin B12, methionine and beta-
ine, were related to lower incident hyperglycemia [21]. Howev-
er, a positive correlation between dietary methionine and the 
rate of DM was observed among Chinese adults [22].

Two case-control studies investigated the relationship between 
OCM nutrients and DM development. Al-Maskari et al. [10] 
observed that both dietary intake and serum level of folate and 
vitamin B12 were lower in Omani adult patients with T2DM, 
compared to the healthy controls. However, Nie et al. [19] re-
ported a positive correlation between plasma zinc and the odds 
of DM in Chinese adults.

The inverse associations were reported between dietary folate 
intake and the rate of DM among Korean women aged ≥40 
years with an average 4-year follow-up [11], and in Japanese 
women aged 40 to 79 years within a 5-year study period [12]. 
Similarly, our previous study found that higher intake of folate, 
but not vitamin B6 or vitamin B12, in young adulthood was as-
sociated with lower diabetes incidence in midlife among White 
and Black Americans over 30 years of follow-up [13]. Regard-
ing other B vitamins in OCM, dietary vitamin B2 intake was 
inversely associated with risk of T2DM in Japanese women 
aged 40 to 79 years [12]. In addition, higher choline intake was 
inversely associated with lower T2DM risk among men aged 42 
to 60 years in eastern Finland [14], while dietary choline or be-
taine intake was not significantly associated with risk of T2DM 
among the United States Black or White male participants aged 
45 to 64 years [15]. In contrast, a study reported a positive trend 
for the association between choline consumption and DM risk 
among postmenopausal United States women aged 50 to 79 
years [15]. As for the biomarkers of OCM nutrients, higher se-
rum betaine was associated with lower T2DM risk in Chinese 
adults aged 40 to 75 years [17]. Presumably, the inconsistent 
findings from the aforementioned observational studies are 
mainly due to heterogeneities in exposure measures, time win-
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dows of exposure, and diverse study populations.
Randomized clinical trials (RCT) investigating the effects of 

OCM nutrients supplementation on incident DM were scanty 
(Table 2). A double-blind RCT reported that Hcy-lowering in-
tervention by daily B vitamins supplementation (FA [2.5 mg], 
vitamin B6 [50 mg], and vitamin B12 [1 mg]) for 4.5 years failed 
to decrease incident T2DM among 5,442 United States female 
health professionals at high risk for CVD [7]. Likewise, another 
double-blind RCT reported that daily supplementation of FA 
(0.8 mg) with enalapril (10 mg) for 7.3 years exerted no signifi-
cant impact on risk of new-onset diabetes among 20,702 Chi-
nese hypertensive adults [8]. Notably, a double-blind RCT in-
volving 200 Sri Lankan participants with prediabetes had noted 
that 12-month zinc supplementation (20 mg zinc daily) de-
creased T2DM incidence [9]. These discrepant results are prob-
ably explained by different supplementation formulas and dura-
tion, and various health statuses across different study popula-
tions. Moreover, the participants in these studies were those 
who were >40 years old and at high risk for metabolic disor-
ders. Thus, the generalizability of these findings is limited.

EFFECT OF OCM NUTRIENTS 
SUPPLEMENTATION ON GLUCOSE 
METABOLISM INDICES

Although it is insufficient to draw a firm conclusion as to wheth-
er OCM nutrients can prevent incident DM, a growing body of 
interventional trials have demonstrated beneficial effects of 
OCM nutrients consumption on glucose metabolism indices 
(Table 2).

Fasting blood glucose (FBG) is a common glucose metabo-
lism index and the easiest way to monitor blood glucose levels 
for DM diagnosis. The present review identified 26 previous 
studies that explored the effects of OCM nutrients supplemen-
tation on FBG and the results remain elusive (Table 2). Single 
administration of FA (400 µg/day to 15 mg/day), betaine (100 
mg/kg/day), and zinc (30 mg/day) failed to result in significant 
changes in FBG values [23-36]. In addition, no remarkable al-
terations in FBG values were reported following the joint sup-
plementation of FA with Fe2+ [37], FA with other B vitamins 
[38-40], FA with metformin [41], B vitamins complex with 
metformin [42]. However, FA (5 mg/day) administration alone 
or joint supplementation of FA (0.4 or 0.8 mg/day) and enalapril 
(10 mg/day) decreased fasting plasma glucose (FPG) among 
Iranian patients with metabolic syndrome (MetS) [43] and Ira-
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nian women with endometrial hyperplasia [44]. Likewise, ad-
ministration of zinc (20 or 233 mg/day) reduced FPG among 
Sri Lankan participants with prediabetes [9] and Iranian wom-
en with gestational diabetes [45].

Glycosylated hemoglobin (HbA1c) is commonly assayed to 
indicate average blood glucose level over the past 3 months, 
which is also used for DM diagnosis [25,37,39,46]. Among five 
studies identified in the present review, only one reported that 
FA (5 mg/day) supplementation led to serum HbA1c reduction 
in overweight and obese Iranian men with T2DM [33]. No sig-
nificant changes in HbA1c values were observed following ad-
ministration of FA in T2DM patients [25], supplementation of 
zinc in prediabetic patients [46], the joint supplementation of 
FA with Fe2+ [37] in diabetic patients, or FA administration 
with other B vitamins in patients with history of stroke [39].

The homeostasis model assessment of insulin resistance 
(HOMA-IR) value is calculated by an equation derived from 
FBG and insulin levels. Higher HOMA-IR was independently 
associated with an increased DM risk [47]. Single FA adminis-
trations at high doses (ranging from 2.5 to 15 mg/day) were in-
versely associated with HOMA-IR among obese women in 
Taiwan [26] and overweight adults [29] as well as postmeno-
pausal women in Italy [32]. Similar inverse associations were 
reported in overweight and obese men with T2DM [33], over-
weight or obese women with polycystic ovarian syndrome 
(PCOS) [35], men and women with MetS [43], and women 
with endometrial hyperplasia in Iran [44]. Likewise, a single 
administration of zinc (20 mg/day or 233 mg zinc gluconate/
day) reduced HOMA-IR in prediabetic patients [9] and wom-
en with gestational diabetes mellitus (GDM) [45]. In addition, 
concomitant administration of FA (5 mg/day) with vitamin 
B12 (500 µg/day) or FA (400 µg/day) with metformin (1,700 
mg/day) decreased HOMA-IR in patients with MetS and hy-
perinsulinemia [38], and elderly adults with vitamin B12 defi-
ciency [40]. However, two other studies reported no effect of 
joint supplementation of B vitamins with metformin on 
HOMA-IR among Turkish women with PCOS [48] and Israeli 
patients with T2DM [42].

The quantitative insulin sensitivity check index (QUICKI) is 
another surrogate biomarker of IR, the higher of which reflects 
a lower degree of IR [44,45]. In the study by Karamali et al. [45], 
6-week zinc supplementation (233 mg/day zinc gluconate) in-
creased QUICKI in women with GDM. Likewise, Bahmani et 
al. [44] demonstrated that 6-week supplemental FA at 5 mg/day 
augmented QUICKI in women with endometrial hyperplasia.

Homeostatic model assessment of β-cell function (HOMA-β), 
derived from fasting plasma insulin and glucose levels, is applied 
as an index of the insulin secretory function of pancreatic β-cells 
[47]. Lower HOMA-β was independently associated with an in-
creased DM risk [47]. Increasement of HOMA-β were observed 
under administration of zinc (20 mg/day) in prediabetic patients 
[9], whereas zinc (233 mg zinc gluconate/day) or FA (5 mg/day) 
supplementation decreased HOMA-β among women with GDM 
[45] or women with cervical intraepithelial neoplasia [49]. How-
ever, no significant effect on HOMA-β was found under single 
supplementation of FA (5 mg/day) in patients with MetS or zinc 
(30 mg zinc gluconate/day) in prediabetic patients [46]. 

The heterogeneous effects of either the single or the combined 
supplementation of OCM nutrients on the above glucose me-
tabolism indices are due to the various dosages and combina-
tions of the OCM nutrients with various durations [23-46,48-
50]. In addition, the medication (e.g., enalapril, metformin) that 
was co-ingested with the OCM nutrients may also counterbal-
ance the beneficial impact of the OCM nutrients on the glucose 
metabolism indices [41,42,50]. Moreover, most of the studies 
were conducted among patients with various health problems 
which contributed to the disputed results [23-46,48-50]. Wheth-
er the OCM nutrients intake prevents the public at an early age 
from developing prediabetic status or incident DM later in life 
merits further investigation. Furthermore, interventions aimed 
at optimizing balanced OCM nutrients status and preventing 
HHcy may help mitigate IR and improve insulin signaling and 
glucose homeostasis. While further research is warranted, in-
corporating OCM nutrients into holistic lifestyle strategies may 
provide a valuable avenue for DM management and prevention.

GENETIC VARIATION ENCODING KEY 
ENZYMES OF OCM IN RELATION TO RISK 
OF DM 

Emerging evidence indicates that the etiology of HHcy may also 
involve genetic variation encoding key enzymes of OCM, which 
may contribute to diabetes development [6,13]. The transfor-
mation of the methyl group from these OCM nutrients to Hcy 
is catalyzed by an array of key enzymes including MTHFR, me-
thionine synthase reductase (MTRR), and MS [51]. Genetic 
single nucleotide polymorphisms (SNPs) may alter these key 
enzymes activities, thus changing the enzymes catalytic efficien-
cies of metabolizing OCM nutrients after dietary intake. SNPs 
encoding these enzymes such as MS 2756A>G, MTRR 66A>G, 
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levels to promote oxidative stress and systemic inflammation, 
which have been reported to activate various stress-sensitive 
signaling pathways and eventually lead to pancreatic β-cells 
dysfunction [5,10], glucose intolerance [58], and IR [21,59,60]. 
OCM nutrients can directly scavenge ROS, decrease CRP, and 
promote production of GSH, the major intracellular antioxi-
dant [10,21,61-64], which can counteract the disturbance in 
glucose metabolism by HHcy. Moreover, OCM nutrients (e.g., 
folate, choline, betaine) provide the methyl group to the univer-
sal methyl-donor, SAM, the change of which can modify meth-
ylation status of genetic loci signals involved in insulin signaling 
and glucose homeostasis [2,6,10,13,65,66]. These alterations in 
DNA methylation patterns may generate different gene expres-
sion profiles that facilitate the development or progression of 
DM [2,65,66]. However, the molecular mechanisms by which 
OCM nutrients contribute to DM pathology are only partially 
understood. The plausible mechanisms remain to be elucidated 
in human studies. Thus, more future studies exploring the un-
derlying mechanisms are warranted.

IMPLICATION FOR PRACTICE

Based on the existing literature, it is premature to infer the 
causal relationship between OCM nutrients intake and incident 
DM. However, the beneficial effect of OCM nutrients on the 
major glucose metabolism indices indicates that consumption 
of natural food rich in OCM nutrients should be stimulated for 
maintaining optimal glucose homeostasis and preventing DM 
development. Co-ingestion of OCM nutrients-enriched foods, 
such as green leafy vegetables, legumes, fruit, nuts, whole-grain 
products, eggs, less-processed dairy products, and deep-sea 
fish, may exert a synergistic beneficial effect on better glucose 
control and insulin sensitivity. Common foods rich in OCM 
nutrients are listed in Supplementary Tables 1-7 [67-69]. In ad-
dition, there is no sufficient evidence to establish personalized 
OCM nutrient recommendations for DM prevention, based on 
the genetic variation information. Lower blood concentrations 
of these OCM nutrients may be indicators of a higher risk of 
DM. Therefore, it is worth monitoring these OCM nutrients 
biomarkers (e.g., plasma/serum levels of OCM nutrients) regu-
larly to adjust their intake for optimal health.

CONCLUSIONS

The present review summarizes the existing evidence of wheth-

MTHFR 677C>T, and 1298A>C, have been evidenced to alter 
blood Hcy level [51-53]. Therefore, these genetic variants may 
also be potential genetic markers for incident diabetes develop-
ment. A meta-analysis incorporating 68 studies indicated that 
MTHFR 677C>T polymorphism was correlated with T2DM in 
Asian populations, but not in White and Black populations [54]. 
Additionally, MTRR 66A>G polymorphism was related to 
T2DM risk in overweight and obese Chinese individuals [55]. 
Another study showed that only those Chinese adults who carry 
MTHFR 1793 GA+AA genotype or MTHFR 1298 AC+CC 
genotype appeared to have lower T2DM risk [17]. In addition, 
in the middle-age Han Chinese, those with the genotype CC  
of MTHFR 1470 A>C had a significantly higher likelihood  
of T2DM, whereas those with the genotype AA of MTHFD 
1958G>A or carrying CT+TT of PEMT (rs4646356) had a  
significantly lower likelihood of T2DM [53]. Moreover, MTH-
FR CTCCGA haplotype (rs12121543-rs13306553-rs9651118-
rs1801133-rs2274976-rs1801131) was found to be related to de-
creased risk of T2DM in a Chinese population, compared with 
CTTTGA haplotype [56]. Nevertheless, the frequencies of these 
SNPs appear different among people with diverse ethnicities, 
which may partially explain the inconsistent results from previ-
ous studies that a direct relationship between these SNPs and 
diabetes remains controversial among different study popula-
tions. However, previous studies investigating the interplay be-
tween OCM nutrients status and genetic variation encoding key 
enzymes of OCM on DM risk were limited. Lu et al. [17] re-
ported the joint effects of higher serum betaine levels (>47.82 
µmol/L) and heterozygous or homozygous variants of MTHFR 
(G1793A, A1298C) could be found influencing risk of T2DM 
among Chinese adults aged 40 to 75 years. The biological rele-
vance of these OCM nutrients and genetic variation to the effi-
ciency of the OCM pathway and Hcy homeostasis makes it nec-
essary to consider interrelationships of the OCM nutrients in-
takes/circulation levels and SNPs with DM risk.

HYPOTHESIZED MECHANISM OF ACTION

Emerging evidence from in vivo and in vitro studies suggests 
that OCM nutrients are essential for facilitating energy and glu-
cose metabolism through multifactorial mechanisms. Low sta-
tus of the OCM nutrients (e.g., folate, choline, or vitamin B12) 
has been evidenced to induce HHcy [4,10,57], which has been 
implicated in the pathogenesis of DM [5,13]. HHcy increases 
reactive oxygen species (ROS) and C-reactive protein (CRP) 
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er OCM nutrients status influences the occurrence of DM. 
Currently, our knowledge of how OCM nutrients play a role in 
protesting against DM development in humans is in its early 
stages. Although limited RCTs using treatment with single/
multiple OCM nutrient(s) reported different onsets on DM, 
the majority of observational studies manifested that intakes  
or blood biomarkers of OCM nutrients, particularly folate and 
betaine, were inversely associated with abnormal glucose me-
tabolism indices and affect the progression of DM. In addition, 
association studies suggest that several SNPs in OCM-related 
genes may influence the metabolic handling of methyl-donors 
and presumably the risk of DM. While OCM nutrients inter-
ventions displayed promise, current human studies were main-
ly conducted among participants with different underlying 
medical conditions or middle-aged and elderly populations 
who may have already had disease onset. Future well-designed 
RCTs are warranted to examine whether balanced OCM nutri-
ents intakes at an early age prevent DM later in life among the 
general population. Moreover, it is essential to examine wheth-
er the OCM nutrients intakes/circulating levels interplay with 
genetic risk factors to influence DM development in multi-eth-
nic populations, which will inform the personalized recom-
mendations for OCM nutrients intakes in terms of DM preven-
tion and management.
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Supplementary Table 1. Common food sources of folate and folic acid [67,68]

Food DFE per serving, μga DV, %

Black-eyed peas (cowpeas), boiled, ½ cup 105 26

Breakfast cereals, fortified with 25% of the DVb 100 25

Rice, white, medium-grain, cooked, ½ cupb 90 22

Asparagus, boiled, 4 spears 89 22

Brussels sprouts, frozen, boiled, ½ cup 78 20

Spaghetti, cooked, enriched, ½ cupb 74 19

Lettuce, romaine, shredded, 1 cup 64 16

Avocado, raw, sliced, ½ cup 59 15

Spinach, raw, 1 cup 58 15

Broccoli, chopped, frozen, cooked, ½ cup 52 13

Mustard greens, chopped, frozen, boiled, ½ cup 52 13

Bread, white, 1 sliceb 50 13

Green peas, frozen, boiled, ½ cup 47 12

Kidney beans, canned, ½ cup 46 12

Wheat germ, 2 tablespoons 40 10

DFE, dietary folate equivalent; DV, daily value.
aDFE (μg)=naturally occurring folate+(1.7×folic acid), bFortified with folic acid as part of the folate fortification program.
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Supplementary Table 2. Common food sources of choline [67]

Food Per serving, mg DV, %

Beef liver, pan fried, 3 ounces 356 65

Egg, hard boiled, 1 large egg 147 27

Beef top round, separable lean only, braised, 3 ounces 117 21

Soybeans, roasted, ½ cup 107 19

Chicken breast, roasted, 3 ounces 72 13

Beef, ground, 93% lean meat, broiled, 3 ounces 72 13

Fish, cod, Atlantic, cooked, dry heat, 3 ounces 71 13

Potatoes, red, baked, flesh and skin, 1 large potato 57 10

Wheat germ, toasted, 1 ounce 51 9

Beans, kidney, canned, ½ cup 45 8

Quinoa, cooked, 1 cup 43 8

Milk, 1% fat, 1 cup 43 8

Yogurt, vanilla, nonfat, 1 cup 38 7

Brussels sprouts, boiled, ½ cup 32 6

Broccoli, chopped, boiled, drained, ½ cup 31 6

DV, daily value.
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Supplementary Table 3. Common food sources of betaine [69]

Food Food, mg/100 g

Wheat bran 1,339.35

Breakfast cereals wheat germ, toasted 1,240.48

Spinach, cooked 645.06

Spinach, raw 599.81

Beets (canned) 296.73

Pretzel, hard, plain, salted 236.45

Finfish and shellfish shrimp, canned 218.74

Baked products wheat bread 201.41

Wheat cracker 198.71

Graham cracker, plain 172.59

Beet, raw 114.42

English muffins 95.42

White bread 93.20

Pasta/rice 89.86

Plain muffins 82.12
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Supplementary Table 4. Common food sources of vitamin B2 [67]

Food Per serving, mg DV, %

Beef liver, pan fried, 3 ounces 2.9 223

Breakfast cereals, fortified with 100% of the DV for riboflavin, 1 serving 1.3 100

Oats, instant, fortified, cooked with water, 1 cup 1.1 85

Yogurt, plain, fat free, 1 cup 0.6 46

Milk, 2% fat, 1 cup 0.5 38

Beef, tenderloin steak, boneless, trimmed of fat, grilled, 3 ounces 0.4 31

Clams, mixed species, cooked, moist heat, 3 ounces 0.4 31

Almonds, dry roasted, 1 ounce 0.3 23

Cheese, Swiss, 3 ounces 0.3 23

Mushrooms, portabella, sliced, grilled, ½ cup 0.2 15

Rotisserie chicken, breast meat only, 3 ounces 0.2 15

Egg, whole, scrambled, 1 large 0.2 15

Quinoa, cooked, 1 cup 0.2 15

Bagel, plain, enriched, 1 medium (3½"–4" diameter) 0.2 15

Salmon, pink, canned, 3 ounces 0.2 15

DV, daily value.
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Supplementary Table 5. Common food sources of vitamin B6 [67]

Food Per serving, μg DV, %

Chickpeas, canned, 1 cup 1.1 65

Beef liver, pan fried, 3 ounces 0.9 53

Tuna, yellowfin, fresh, cooked, 3 ounces 0.9 53

Salmon, sockeye, cooked, 3 ounces 0.6 35

Chicken breast, roasted, 3 ounces 0.5 29

Breakfast cereals, fortified with 25% of the DV for vitamin B6 0.4 25

Potatoes, boiled, 1 cup 0.4 25

Turkey, meat only, roasted, 3 ounces 0.4 25

Banana, 1 medium 0.4 25

Marinara (spaghetti) sauce, ready to serve, 1 cup 0.4 25

Ground beef, patty, 85% lean, broiled, 3 ounces 0.3 18

Waffles, plain, ready to heat, toasted, 1 waffle 0.3 18

Bulgur, cooked, 1 cup 0.2 12

Cottage cheese, 1% low-fat, 1 cup 0.2 12

Squash, winter, baked, ½ cup 0.2 12

DV, daily value.
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Supplementary Table 6. Common food sources of vitamin B12 [67]

Food Per serving, μg DV, %

Beef liver, cooked, pan fried, 3 ounces 70.7 2,944

Clams (without shells), cooked, 3 ounces 17 708

Nutritional yeast, fortified, from several brands (check label), about ¼ cup 8.3 to 24 346–1,000

Salmon, Atlantic, cooked, 3 ounces 2.6 108

Tuna, light, canned in water, 3 ounces 2.5 104

Beef, ground, 85% lean meat/15% fat, pan-browned, 3 ounces 2.4 100

Milk, 2% milkfat, 1 cup 1.3 54

Yogurt, plain, fat free, 6-ounce container 1 43

Breakfast cereals, fortified with 25% of the DV for vitamin B12, 1 serving 0.6 25

Cheese, cheddar, 1½ ounces 0.5 19

Egg, whole, cooked, 1 large 0.5 19

Turkey, breast meat, roasted, 3 ounces 0.3 14

Tempeh, 1/2 cup 0.1 3

DV, daily value.
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Supplementary Table 7. Common food sources of zinc [67]

Food Per serving, mg DV, %

Oysters, Eastern, farmed, raw, 3 ounces 32 291

Oysters, Pacific, cooked, 3 ounces 28.2 256

Beef, bottom sirloin, roasted, 3 ounces 3.8 35

Blue crab, cooked, 3 ounces 3.2 29

Breakfast cereals, fortified with 25% of the DV for zinc, 1 serving 2.8 25

Cereals, oats, regular and quick, unenriched, cooked with water, 1 cup 2.3 21

Pumpkin seeds, roasted, 1 ounce 2.2 20

Pork, center loin (chops), bone-in, broiled, 3 ounces 1.9 17

Turkey breast, meat only, roasted, 3 ounces 1.5 14

Cheese, cheddar, 1.5 ounces 1.5 14

Shrimp, cooked, 3 ounces 1.4 13

Lentils, boiled, ½ cup 1.3 12

Sardines, canned in oil, drained solids with bone, 3 ounces 1.1 10

Greek yogurt, plain, 6 ounces 1 9

Milk, 1% milkfat, 1 cup 1 9

DV, daily value.




