
D I A B E T E S  &  M E T A B O L I S M  J O U R N A L

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

Copyright © 2024 Korean Diabetes Association https://e-dmj.org

Attention to Innate Circadian Rhythm and the Impact 
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Novel strategies are required to reduce the risk of developing diabetes and/or clinical outcomes and complications of diabetes. In 
this regard, the role of the circadian system may be a potential candidate for the prevention of diabetes. We reviewed evidence 
from animal, clinical, and epidemiological studies linking the circadian system to various aspects of the pathophysiology and 
clinical outcomes of diabetes. The circadian clock governs genetic, metabolic, hormonal, and behavioral signals in anticipation of 
cyclic 24-hour events through interactions between a “central clock” in the suprachiasmatic nucleus and “peripheral clocks” in the 
whole body. Currently, circadian rhythmicity in humans can be subjectively or objectively assessed by measuring melatonin and 
glucocorticoid levels, core body temperature, peripheral blood, oral mucosa, hair follicles, rest-activity cycles, sleep diaries, and 
circadian chronotypes. In this review, we summarized various circadian misalignments, such as altered light-dark, sleep-wake, 
rest-activity, fasting-feeding, shift work, evening chronotype, and social jetlag, as well as mutations in clock genes that could con-
tribute to the development of diabetes and poor glycemic status in patients with diabetes. Targeting critical components of the 
circadian system could deliver potential candidates for the treatment and prevention of type 2 diabetes mellitus in the future.
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INTRODUCTION 

Type 2 diabetes mellitus (T2DM), characterized by insulin re-
sistance in the liver, skeletal muscle, and adipose tissue, com-
bined with relative pancreatic β‐cell dysfunction, is the most 
common metabolic disease in humans [1]. Despite the devel-
opment of various treatment modalities for diabetes, the num-
ber of patients with T2DM continues to increase and is expect-
ed to reach 642 million by 2040, representing a public health 
challenge [2]. Therefore, fundamental strategies are needed to 
prevent and treat diabetes. 

Among lifestyle risk factors regarded as hyperglycemic con-
tributors, the impact of circadian disruption on the develop-
ment of T2DM has attracted considerable interest [3]. In mod-
ern society, the availability of artificial light has enabled the 

counteraction of natural biological rhythms, whether intended 
or not. Various studies have indicated that disruptions in circa-
dian rhythms contribute to impaired glycemic status in humans 
[4-6].

Consequently, innovative approaches involving circadian 
rhythms are needed to prevent and treat T2DM. Therefore, the 
current review aimed to delineate the concept of circadian 
rhythms and their impact on glycemia by summarizing evi-
dence from animal, clinical, and epidemiological research.  

THE BASIC CONCEPT OF CIRCADIAN 
RHYTHM 

All living organisms possess an intrinsic time-keeping system 
with an interval of approximately 24 hours, known as the cir-
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cadian rhythm [4,7,8]. It governs and synchronizes genetic, 
metabolic, hormonal, and behavioral signals in anticipation of 
further signals [4,8,9]. The circadian clock system is organized 
as the “master clock” or “central clock” in the suprachiasmatic 
nucleus (SCN) of the hypothalamus, acting as a pacemaker for 
“peripheral clocks” in other brain regions and various organs 
(e.g., liver, pancreas, heart, muscle, and adrenal gland) [8]. En-
dogenously generated rhythms can be entrained by a variety of 
external cues (zeitgebers), including light and nonphotic syn-
chronizers (e.g., meal intake, exercise, social interactions, and 
temperature) [10].

During molecular regulation, the central clock permeates 
accurate daily oscillations in gene expression via two inter-
locked transcriptional-translational feedback loops (TTFL) 
[11]. As shown in Fig. 1, a heterodimer of transcription factors, 
the brain and muscle Arnt-like protein (BMAL) and circadian 
locomotor output cycles kaput (CLOCK), promotes the tran-
scription of period (PER), cryptochrome (CRY), reverse eryth-
roblastosis virus (REV-ERB), and retinoic acid-related orphan 
receptor (ROR) [12]. PER and CRY reverse repress BMAL-
CLOCK-mediated transcription [7,9]. Through ROR response 
elements in BMAL1, REV-ERB counteracts BMAL transcrip-
tion, whereas ROR induces its activation [13]. Downstream 

target genes that do not interact with the BMAL-CLOCK het-
erodimer are clock-controlled genes (CCGs). CCGs play im-
portant roles in oxidative processes, metabolism, and immune 
reactions [14]. 

The majority component of SCN was gamma-aminobutyric 
acid signaling (GABA) neuron. Its spontaneous firing activity 
depicts peak in the daytime and trough at nighttime [15]. 
About 15 brain lesions innervated by the SCN directly, such as 
the paraventricular nucleus (PVN), the subparaventricular 
zone, the arcuate nucleus, and the dorsomedial hypothalamus 
[16]. SCN signals propagate to the autonomous nervous sys-
tem (ANS) via the PVN primarily [16,17]. Given ANS activity 
is related to glucose production and hepatic glycogen synthe-
sis, disruption of SCN signals can promote hyperglycemia 
[18]. 

Peripheral clocks also possess independent, self-sustained 
rhythms themselves, along with those modulated by the SCN 
[19]. The SCN and peripheral clocks are intertwined as a hier-
archical oscillator network, synchronized via molecular, neu-
ral, and endocrine routes, thereby generating 24-hour oscilla-
tions [4,8]. These rhythmicities, including the central/periph-
eral clocks and environmental/behavioral cues, are aligned 
(Fig. 2) [3].

Fig. 1. Circadian clock system. PER, period; CRY, cryptochrome; CLOCK, circadian locomotor output cycles kaput; BMAL, brain 
and muscle Arnt-like protein; RORE, retinoic acid-related orphan receptor response element; REV-ERB, reverse erythroblastosis 
virus; ROR, retinoidrelated orphan receptor.
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MEASURING CIRCADIAN RHYTHM IN 
HUMANS

In humans, circadian rhythms can be estimated by objective or 
subjective methods. Common methods for objectively assess-
ing circadian rhythms include evaluating melatonin and corti-
sol levels, core body temperature (CBT) modulated by the SCN, 
and rest-activity cycles [13]. Feasible methods targeting periph-
eral clocks are also available. The rhythms in the clock oscilla-
tors are represented by cosine waves [3]. In addition to objec-
tive measurements conducted in a controlled environment, 
sleep logs and chronotype questionnaires can also be used in 

real-world settings.
Nocturnal rodents are widely used as mammalian models 

for circadian rhythm studies [20]. However, most signal propa-
gation from the SCN occurs in opposite directions in diurnal 
humans and nocturnal rodents, except for melatonin [15]. 
Therefore, the term “sleep-wake” rather than “light-dark” is 
more appropriate for designating time to describe circadian 
rhythms in all animals.

Melatonin
Melatonin is synthesized and secreted by the pineal gland 
upon the onset of darkness, peaking at 2:00 AM to 4:00 AM 

Fig. 2. Alignment (A) and misalignment (B) between central/peripheral clocks and environmental/behavioral rhythms. 
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(Fig. 3) [21]. As the SCN clock is its primary regulator, melato-
nin rhythmicity is considered an indicator of the rhythm of the 
human master circadian clock [22]. Light inhibits melatonin 
synthesis [23]. Melatonin facilitates circadian phase shifting 
(adjusting the timing of the circadian system) [24] and can in-
duce a sleep-permissive state by inhibiting SCN neuronal fir-
ing [25].

To determine the phasing of melatonin, melatonin levels are 
usually measured in the plasma or saliva every 30 minutes. To 
minimize the interference of light on melatonin rhythmicity, 
serial melatonin sampling is performed in a low-light (<50 
lux) environment [22]. Dim light melatonin onset (DLMO) 
[13] is determined by the time point at which melatonin levels 
rise above specific cut-off values: 10 pg/mL for plasma, 3 pg/mL 
for saliva, or two standard deviations above the mean of the 
first three baseline values [26]. Currently, DLMO in the plasma 
or saliva is regarded as the gold standard for assessing circadi-
an rhythms [13]. 

Glucocorticoids
Humans and rodents exhibit different rhythms of glucocorti-
coid (corticosterone in rodents and cortisol in humans) secre-
tion. Corticosterone peaks at 6:00 PM to 6:30 PM in rodents 
[27], and cortisol peaks at 7:00 AM to 8:00 AM in humans, 
reaching nadir at midnight (Fig. 3) [28].

The SCN affects glucocorticoid levels in various ways [29]. It 
can activate the release of corticotropin-releasing hormone 
and adrenocorticotropic hormone via the PVN [30] and the 
sympathetic nervous system (SNS) [31]. As a peripheral clock, 
the adrenal gland itself can affect glucocorticoid rhythm [32]. 
Moreover, CLOCK and BMAL are involved in the rate-limit-
ing component of steroidogenesis, resulting in a rhythmic in-
crease in steroidogenesis [33]. When the daily rhythms of 
blood cortisol levels in individuals with T2DM were compared 
with those in controls, a flattened diurnal cortisol curve was 
observed throughout the day [34].

Core body temperature 
CBT naturally fluctuates over a 24-hour period affected by the 
sleep-wake cycle in the opposite direction of the melatonin 
rhythm (Fig. 3) [35]. While melatonin levels increase during 
the night, CBT decreases, and the lowest CBT (nadir) typically 
occurs around 3:00 AM to 4:00 AM. Sleepiness is enhanced 
when CBT declines. Traditionally, the estimation of CBT rhyth-
micity has been used to identify circadian rhythms in humans. 

However, due to the substantial influence of activity and meals 
and the inconvenience of obtaining CBT through transrectal 
measurement [36], a shift towards a preference for melatonin 
levels as the circadian marker of choice ensued. 

Peripheral clock estimation
Several minimally invasive ways to depict peripheral circadian 
rhythms are available [13]. Currently, clock gene expression 
can be studied in vivo in the peripheral blood, oral mucosa, 
and hair follicles [13]. 

Several studies have shown that the extent of clock gene ex-
pression in whole blood is related to sleep disturbances [37]. In 
patients with obstructive sleep apneas, the rhythmicity of 
BMAL1, CLOCK, and CRY2 expression in whole blood is dis-
rupted compared to that in healthy controls [38]. 

Obtaining oral mucosa samples by scraping off pipette tips 
has recently become a valuable tool for studying clock gene ex-
pression [39]. A study performed under real-life conditions in-
dicated that individual chronotypes affect the circadian phases 
of PER and REV-ERBα expression profiles in the oral mucosa 
[40]. However, the frequency of sampling at 1- or 2-hour inter-
vals throughout the day limits precise measurements [13]. 

Hair and beard follicle samples can also serve as indicators 
of the human peripheral circadian clock [41]. Ferrante et al. 
[42] reported differences in the clock gene expression of PER 
in hair follicle cells of 14 individuals according to their chrono-
type. Despite the ability to extract high-quality RNA from ap-
proximately 10 head hairs or five beard hairs per time point 
[41], optimization of the amount of sampling according to sex 
and hair thickness is required [43]. 

Rest-activity cycles 
The circadian rest-activity rhythm, which is a measure of cir-
cadian timing influencing behavior, is a common method of 
gauging the cycle of an individual [44]. Noninvasive actigraphy 
has traditionally been used to collect time series information 
[44]. Actigraphy uses a wrist-worn accelerometer that records 
movement, sleep-wake cycles, and light exposure in humans 
with 80% accuracy compared to polysomnography [44].

Resting-activity rhythms are usually analyzed using cosinor 
analysis [45]. Cosinor analysis enables the extraction of several 
circadian features from original time series data after exploring 
the best-fit cosine curve with the least difference [46]. To elab-
orate further, cosinor analysis transforms graphical oscillations 
into numbered features. The basic circadian indices of cosinor 
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analysis are amplitude, acrophase, midline statistic of rhythm 
(MESOR), period, and phase (Fig. 4) [45-47]. The amplitude is 
defined as half the difference between the peak and trough val-
ues, reflecting the strength of the rhythm. In some studies, re-
searchers defined this as the gap between the peak and trough 
values [48]. MESOR indicates mean activity levels. A period 
represents the time interval between two reference points with-
in a rhythm (e.g., between two peaks). Phase (delayed or ad-
vanced) refers to the timing of the trough or peak. In examples 
of the sleep-wake cycle, a phase delay indicates a later sleep 
time [49]. Acrophase is the time when peak activity occurs in 
each cycle, and a higher value reflects a later peak [50]. Addi-
tionally, the overall rhythmicity/goodness-of-fit of the extend-
ed cosine model was estimated using pseudo-F statistics or r-
squared values, with a higher value indicating a more robust 
overall rest-activity rhythmicity [47,50].

Currently, attempts to adapt consumer-grade wearable activ-
ity trackers and mobile technologies at a low cost instead of us-
ing conventional actigraphy are increasing, thereby enabling 
the construction of a population-based rest-activity cycle data-
base; however, more reliability is required [51].

Sleep diary
Keeping a sleep log of the time they wake up, go to bed, and 

take a nap can offer insights into the circadian rhythm of an 
individual. Continuous recordings for a period of 14 days on 
both working and free days are required [52]. Additionally, it is 
useful to collect information about other behaviors that can 
influence the sleep-wake cycle, such as alcohol or caffeine con-
sumption, practice of exercises, and electronic device usage. 

Circadian chronotype
A chronotype is defined as the behavioral preference of an in-
dividual regarding the sleep-wake cycle, which classifies indi-
viduals as having a morning (lark) or evening (owl) chronotype 
[53]. Although they do not indicate circadian rhythms per se, 
prior research has shown that these questionnaires are equiva-
lent to measuring melatonin levels and CBT in healthy popula-
tions [54]. Chronotypes are determined by various factors, 
such as genetic variations, ethnicity, sex, environmental cues 
(e.g., light and work schedules), country, and daylight exposure 
[55,56].

Chronotypes are typically assessed using self-reported ques-
tionnaires [57]. Widely-administered questionnaires are (1) 
the Morningness-Eveningness Questionnaire [57], (2) the Mu-
nich Chronotype Questionnaire (MCTQ), and (3) the MCTQ 
for Shift Workers [58]. The MCTQ calculates the midpoint of 
sleep duration on work-free days, adjusted by “oversleep” 

Fig. 4. Cosine curve characteristics. (A) Parameters of circadian rhythmicity. Examples of delayed phase (B), advanced phase (C), 
low amplitude (D), and high amplitude (E) curves. MESOR, midline statistic of rhythm. 
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caused by the sleep debt on the workdays, thereby identifying 
the concept of “social jetlag” [55]. Social jetlag indicates a dis-
crepancy in sleep timing between workdays and work-free 
days, corresponding to social and biological time [55]. Prior 
evidence has demonstrated that individuals with social jet lag, 
estimated by the MCTQ, are linked to numerous metabolic ab-
normalities and obesity [59].

IMPACT OF CIRCADIAN RHYTHM ON 
GLUCOSE LEVELS

Diurnal patterns are observed in the regulation of premeal and 
postprandial glucose levels (Fig. 5) [15]. In healthy humans un-
der regular light-dark cycles, baseline or premeal glucose levels 
peak upon wakening and trough during sleep, independent of 
eating behaviors [60,61]. Diurnal oscillations of baseline pre-
meal glucose levels are related to the rhythm of endogenous 
glucose production (EGP), primarily derived from hepatic glu-
coneogenesis [62]. The diurnal rhythm of baseline glucose and 
gene expression of hepatic gluconeogenic are disrupted after 
SCN lesioning in animal studies [63,64]. The GABA pathway 
in the SCN and downstream ANS is thought to be involved in 
the regulation of baseline glucose levels or EGP [65].

The daily oscillations of postprandial glucose levels contrast 
with premeal glucose level fluctuations. Prior human studies 
using a hyperinsulinemic-euglycemic clamp have demonstrat-
ed that an identical meal could induce greater glucose excur-
sion at dinner than at breakfast [66,67]. That is, insulin sensi-
tivity and glucose tolerance are greater upon waking than in 
the evening, and EGP suppression by insulin also results in di-
urnal oscillations [66,68]. This diurnal rhythm is thought to be 
mediated by the SCN with PVN-independent mechanisms 
[65,68].

Insulin secretion is also enhanced during waking hours com-
pared to that during sleep [69]. These oscillations are derived 

not only from the SCN, but also from the islet-autonomous 
mechanism itself [68,70]. Previous animal studies have shown 
that BMAL1 and CLOCK regulate the oscillations of genes en-
coding the secretory machinery involved in insulin release 
[71]. Moreover, the hypothalamus, especially oxytocin neurons 
in the PVN, regulates insulin secretion of β-cells through pan-
creatic islet innervation via the SNS [70]. When these oxytocin 
neurons were activated, insulin secretion was suppressed, where-
as ablation of these enhanced the insulin secretion in β-cells of 
mice [70].

In human studies on patients with diabetes, insulin rhyth-
micity in response to blood glucose was dampened [3]. In a 
postmortem analysis of patients with T2DM, the number of 
SCN neurons was lower than that in patients without T2DM 
[72]. 

Dawn phenomenon
The dawn phenomenon (DP) refers to spontaneous early morn-
ing hyperglycemia without nocturnal hypoglycemia [73]. In 
extended DP, fasting hyperglycemia is accompanied by post-
breakfast hyperglycemia [74]. Although patients with DP have 
glycosylated hemoglobin (HbA1c) levels 0.4% higher than 
those without DP, no efficient strategy to manage DP exists de-
spite treatment modalities, such as the additional administra-
tion of basal insulin before bedtime or insulin sensitizers [74, 
75].

DP is likely induced by increased insulin resistance and he-
patic EGP rather than by decreased insulin secretion or clear-
ance rates [76]. In a novel approach based on the circadian 
clock, patients with T2DM and extended DP were noted to 
display a different oscillatory pattern of REV-ERBα/β expres-
sion compared with those without DP [77]. Improving sleep 
quality, engaging in moderate-intensity aerobic exercise before 
breakfast, and frequently interrupting sitting could be benefi-
cial for managing DP in patients with T2DM [78-81].   

Fig. 5. Dominant features of glucose metabolism in the morning (A) and at night (B).
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DISRUPTIVE CIRCADIAN RHYTHMS AND 
T2DM

As shown in Fig. 6, several studies have demonstrated a signifi-
cant link between circadian disruption and T2DM [4-6]. 

Mutations in clock genes
Disruption of the TTFL, which consists of four core clock genes 
(BMAL1, CLOCK, PER, and CRY), can induce abnormalities 
in glucose metabolism [69,82-90]. Mice with CLOCK muta-
tions are hyperphagic and obese, resulting in the presence of 
metabolic syndromes, including hyperglycemia [90]. In other 
animal models, disruption of the Bmal1, CLOCK, and Cry 
genes leads to glucose intolerance and diabetes [82-84]. In hu-
man studies, polymorphisms in the BMAL1, CLOCK, and 
CRY genes have been shown to increase the risk of T2DM [69], 
and an interaction between diet and clock gene mutations has 
been observed [91-93].

Altered light-dark cycles
Since the SCN receives light signals, altered light-dark cycles 
can substantially affect circadian rhythms [94,95]. In animal 
models, both a short photoperiod (5 hours a day) and constant 

light exposure during the day, physiological sleeping period, 
may lead to impaired glucose tolerance and the absence of 
rhythmicity in insulin sensitivity, respectively [94,95]. In stud-
ies involving a prospective cohort of an older adult population, 
light exposure at night, even at low levels in the bedroom, was 
related to an increased risk of diabetes [96]. The inhibition of 
melatonin coupled with elevated glucocorticoid levels at night 
under disrupted light-dark cycles may induce a decrease in in-
sulin secretion and exacerbate insulin resistance [69,97]. 

Disruption in sleep-wake cycles
Traditionally, the association between the quantity of sleep and 
future risk of T2DM has been investigated in various studies. 
However, they were fraught with discrepancies. Several popu-
lation-based studies have reported the predictive value of short 
sleep duration in patients with T2DM [98-100]. A recent co-
hort study with a 16-year follow-up period demonstrated that 
individuals with sleep deprivation have a higher risk of T2DM 
incidence than those who sleep sufficiently [99]. However, a 
few studies have shown that long sleep duration is significantly 
associated with a higher risk of T2DM [101,102]. Several me-
ta-analyses and a study on the Chinese population found a U-
shaped association between sleep duration and T2DM risk; 

Fig. 6. Impact of circadian disruption on insulin resistance or diabetes. BMAL, brain and muscle Arnt-like protein; CLOCK, cir-
cadian locomotor output cycles kaput; CRY, cryptochrome.

Type 2 diabetes mellitus 

Circadian 
disruption

Disruption in rest- 
activity rhythms

Mutations
in clock gene

Disruption in fasting- 
feeding rhythms

Shift work

Evening chronotype & 
Social jetleg

Altered light-
dark cycle

Disruption in
sleep-wake cycles

e.g., BMAL1, CLOCK, CRY, diet- 
clock gene mutation interactions

e.g., Eating dinner late,  
time-restricted eating

e.g., Sleep duration (short or long), 
poor sleep quality, daytime napping

e.g., Constant light
exposure



Lee DY, et al.

44 Diabetes Metab J 2024;48:37-52 https://e-dmj.org

that is, both short and long sleep durations are related with an 
increased risk of T2DM [103-105]. The reason for these incon-
sistent findings may have stemmed from the varied classifica-
tions of sleep duration.

As an explanation for these relationships, sleep deprivation 
can induce altered sympathovagal balance [97], resulting in 
decreased insulin secretion and insulin-mediated glucose up-
take while stimulating hepatic glucose release [97] and elevat-
ing evening cortisol levels [19]. In the case of long sleep dura-
tion causing T2DM, sleep can still occur despite sleep frag-
mentation, frequent awakenings, and poor sleep quality [106], 
which are indicative of poor metabolic health caused by low 
physical activity, depression, or obesity [107]. Furthermore, 
poor sleep quality [108,109], daytime napping [101], and ha-
bitual late sleep initiation, from 1:00 AM to 6:00 AM [110], are 
significantly associated with the risk of T2DM.

Disruption in rest-activity rhythm
A small amount of evidence has established rest-activity rhythms 
[111-114]. In a cross-sectional analysis, a lower amplitude-to-
MESOR ratio was associated with higher fasting insulin levels 
and homeostatic model assessment for insulin resistance, 
while a reverse association was found between the amplitude 
and presence of T2DM [114]. Using large 24-hour actigraphy 
data from 11,210 participants from the United States National 
Health and Nutrition Examination Survey (NHANES), Xiao et 
al. [115] suggested that individuals with a stronger cosine-like 
pattern of activity were less likely to be diabetic. Considering 
the influence of the rest-activity cycle in patients with type 1 
diabetes mellitus (T1DM), Griggs et al. [111] and Farabi et al. 
[112], through coherence and cosinor analyses, uncovered that 
the relationship between glucose levels and routine activity 
during both wakefulness and sleep follows a circadian pattern. 

Disruption in fasting-feeding rhythms
Fast-feeding rhythms, consisting of the timing, frequency, and 
regularity of dietary intake, are among the main components 
of circadian rhythms. Various studies have demonstrated the 
impact of diet timing, the so-called chrononutrition, on glu-
cose metabolism [116-120].

Eating dinner late reportedly promotes insulin resistance and 
weight gain [116]. In an experimental study on young Japanese 
adults, a late eating schedule (12:00 PM, 5:00 PM, and 11:00 
PM) increased the mean glucose concentration estimated using 
a continuous glucose monitor [117]. Kwak et al. [118] showed 

that individuals fasting nightly for greater than 12 hours or eat-
ing the last meal before 9:00 PM had lower odds of developing 
T2DM. Consuming more than 40% of their energy intake dur-
ing the evening was related to a high risk of developing T2DM 
[118]. In contrast, an analysis using NHANES data suggested 
that an earlier start to eating was associated with lower fasting 
glucose levels and insulin resistance [119]. 

In patients with diabetes, misestimation of dietary intake is 
also a particular concern. Individuals with diabetes who eat at 
night, that is, consume more than 25% of their daily energy in-
take after regular dinnertime, have been shown to have poor 
compliance with glucose monitoring, higher HbA1c levels, and 
a greater number of complications from diabetes [120,121]. 

Recently, time-restricted eating (TRE), a type of intermittent 
fasting, was proposed as a method to reduce weight [122]. In 
healthy and synchronized individuals, the time from the first 
to last energy consumption throughout the day, called the typi-
cal eating window, spans 12 to 15 hours/day [123]. TRE short-
ens the eating window to around 4 to 10 hours/day [124]. 
Mounting evidence has similarly shown improvements in glu-
cose metabolism, insulin sensitivity, body weight, blood pres-
sure, lipid levels, and gut microbiome after TRE [125-127]. A 
recent meta-analysis of 11 studies reported significantly lower 
fasting glucose levels in participants on TRE than that in those 
eating freely [125]. Metabolic benefits have also been observed 
in individuals with prediabetes and T2DM [128,129]. This sig-
nificance is usually explained by a spontaneous reduction in 
additional energy intake, a longer fasting period, and timing of 
food intake harmonized with circadian rhythms [123]. How-
ever, the shorter intervention duration (<16 weeks) and varia-
tion in adherence need to be resolved [130].

Shift work
Shift work is a typical example of circadian misalignment be-
tween the central and peripheral clocks and environmental/
behavioral oscillations (Fig. 2). The types of shift work include 
rotating shifts, regular evening or night schedules, 24-hour 
shifts, on-call or casual shifts, split shifts, and other nonday 
schedules [131]. The International Labor Organization report-
ed that almost 20% of the overall workforce, nearly 0.7 billion 
workers globally, is engaged in a shift work pattern [132]. Over 
the past decades, a growing body of evidence has indicated the 
adverse health outcomes of shift work, including T2DM [133-
136]. In a meta-analysis of 12 cohort studies, involving 244,266 
participants, the adjusted relative risks for the relationship be-
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tween shift work and diabetes mellitus risk was 1.14 (95% con-
fidence interval, 1.10 to 1.19; I2=38.9%) [134]. Importantly, in-
dividuals working rotating shifts have been reported with a 
higher risk of diabetes than those working fixed night shifts 
[133,135]. The underlying mechanism is thought to be related 
to shorter sleep durations and decreased insulin sensitivity due 
to continuous shift work [136]. In patients with T2DM, night-
shift work was shown to be related to poorer glucose control 
with higher HbA1c levels than those who did not work night 
shifts, irrespective of sleep duration, chronotype, and daily car-
bohydrate intake [137].

Evening chronotype
Prior research shows that individuals with the evening chrono-
type tend to consume fewer and larger meals and eat dinner 
late because of later waking times [138]. Accordingly, epidemi-
ological evidence suggests a potential association between the 
evening chronotype and an increased risk of T2DM, indepen-
dent of sleep duration [139,140]. In patients with diabetes, val-
id evidence of a relationship between chronotype and glycemic 
control status exists. In 210 non-shift workers with T2DM in 
Thailand, delayed bedtime on weekends was associated with 
poor glycemic control [113]. 

Social jetlag
Social jet lag is a subtle and common example of circadian mis-
alignment in modern societies, with a prevalence superior to 
50% [55,141]. The clinical impact of social jet lag has been re-
ported in various epidemiological studies [141,142]. Individu-
als with social jetlag greater than 1 hour have a 1.75 times high-
er prevalence of diabetes or prediabetes than those with less 
than 1 hour of social jetlag [141]. In a prospective cohort of pa-
tients with T2DM in the Netherlands, a cross-sectional associa-
tion between moderate-to-high social jet lag and higher 
HbA1c was observed [142]. 

The extent of social jetlag partially depends on the chrono-
type of an individual (“morning” or “evening” preference) [57]. 
The detrimental effects of social jetlag have been explained by 
the hypothalamic-pituitary-adrenal axis disruption and the in-
fluence of sleep architecture, incretin hormones, and mood 
[142,143]. 

FUTURE DIRECTIONS

As the circadian system also affects cardiovascular physiology, 

kidney function, and glycemic status [144], the clinical impact 
of circadian disruption on the risk of complications in diabetes 
is an interesting subject for researchers. Recently, patients with 
both diabetes and disrupted rest-activity rhythms exhibited a 
higher risk of developing cardiovascular diseases and mortality 
in an analysis of the United States Biobank database [145]. 

Regarding the role of the circadian clock in the kidneys, vari-
ous laboratory studies have shown that many cellular pathways 
that result in diabetic nephropathy are involved in circadian 
misalignment [146-148]. PER1, the main clock protein, has 
been reported to regulate the transcription levels of glucose 
transporter sodium-glucose cotransporter 1 (SGLT1) in proxi-
mal tubule cells [148], and the circadian clock located in podo-
cytes could control the expression of the Rho GTPase activating 
protein 24 (ARHGAP24) gene associated with predisposition to 
diabetic nephropathy in both T1DM and T2DM [146]. Anser-
met et al. [147] demonstrated that a Bmal1 knockout in the re-
nal tubule aggravates hyperglycemia by accelerating renal glu-
coneogenesis in mouse models of T1DM. Collectively, the clin-
ical significance of circadian perturbations on renal outcomes 
in patients with diabetes could be a subject of future research.

Beyond a detailed understanding of the circadian system, a 
novel strategy for tailoring glycemic control is needed. Small 
interventions, such as continuous positive airway pressure in 
patients with both DP and obstructive sleep apnea, frequent 
interruptions of sedentary time, or moderate-intensity exercise 
before breakfast, have been shown to improve DP [78-81]. 

CONCLUSIONS

The development of novel therapeutic and preventative strate-
gies is imperative to reduce the prevalence of T2DM world-
wide. Despite the considerable progress made in recent decades 
on the understanding of circadian physiology, its application in 
the treatment of diabetes remains limited. In this regard, we re-
viewed evidence from animal-based, clinical, and epidemio-
logical studies linking the circadian system to various aspects 
of the pathophysiology and clinical outcomes of T2DM. We 
hope that targeting key components of the circadian system 
will yield a potential candidate to treat and prevent T2DM in 
the future.
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