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Type 2 diabetes mellitus (T2DM) and sarcopenia (low skeletal muscle mass and function) share a bidirectional relationship. The 
prevalence of these diseases increases with age and they share common risk factors. Skeletal muscle fat infiltration, commonly re-
ferred to as myosteatosis, may be a major contributor to both T2DM and sarcopenia in older adults via independent effects on in-
sulin resistance and muscle health. Many strategies to manage T2DM result in energy restriction and subsequent weight loss, and 
this can lead to significant declines in muscle mass in the absence of resistance exercise, which is also a first-line treatment for sar-
copenia. In this review, we highlight recent evidence on established treatments and emerging therapies targeting weight loss and 
muscle mass and function improvements in older adults with, or at risk of, T2DM and/or sarcopenia. This includes dietary, physi-
cal activity and exercise interventions, new generation incretin-based agonists and myostatin-based antagonists, and endoscopic 
bariatric therapies. We also highlight how digital health technologies and health literacy interventions can increase uptake of, and 
adherence to, established and emerging treatments and therapies in older adults with T2DM and/or sarcopenia. 
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INTRODUCTION 

Globally, almost 500 million individuals have type 2 diabetes 
mellitus (T2DM) and prevalence is increasing [1]. Most adults 
with T2DM have overweight or obesity [2] and the hallmark 
characteristic of this disease, insulin resistance, leads to vascular 
complications and subsequent adverse outcomes [3,4]. T2DM 
is most prevalent in older adults [1] and associated with age-re-
lated conditions, including the skeletal muscle disease sarcope-
nia [5-7]. Sarcopenia is characterised as the age-related decline 

in skeletal muscle mass and function [8-10], and 10% to 27% of 
older adults have this condition [11]. Sarcopenia is associated 
with adverse outcomes including higher risk of falls, fractures, 
and premature mortality [12-14]. Sarcopenia has a bidirectional 
relationship with T2DM as components of both diseases wors-
en each other via positive feedback loops [5-7]. This review ex-
plores recent evidence on the relationship between T2DM and 
sarcopenia, including established and emerging treatments for 
managing these diseases, individually or concurrently. 
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OPERATIONAL DEFINITIONS OF 
SARCOPENIA 

There are several operational definitions of sarcopenia (Table 1) 
[8-10], resulting in inconsistent prevalence estimates and asso-
ciations between sarcopenia and adverse outcomes. The most 
widely adopted is the revised European Working Group on Sar-
copenia in Older People (EWGSOP) definition. The EWGSOP 
diagnoses sarcopenia as the presence of low muscle strength 
and mass, and determines severity based on physical perfor-
mance [8]. Recently, the Australian and New Zealand Society 
for Sarcopenia and Frailty Research (ANZSSFR) published a 
Delphi method-based consensus statement supporting the use 
of this definition in Australia and New Zealand [15]. The Asian 
Working Group for Sarcopenia’s (AWGS) revised definition re-
quires low muscle mass in the presence of low muscle strength 
or poor physical performance to diagnose sarcopenia, with the 
presence of all three identifying severe cases [9]. The Sarcopenia 
Definitions and Outcomes Consortium (SDOC) [10] used sta-
tistical procedures to identify cut-points for sarcopenia based 
on clinical outcomes, resulting in the omission of low muscle 
mass as a requisite for the diagnosis of sarcopenia, and requir-
ing only low muscle (hand grip) strength and poor physical 
performance (slow gait speed). The SDOC reported that low 

relative strength (i.e., low muscle strength scaled to measures  
of body size), was more consistently predictive of clinical out-
comes compared with absolute muscle strength [12]. Over-
weight and obesity based on body mass index (BMI) are associ-
ated with higher absolute, but lower relative, muscle mass and 
strength [16-18], and it may therefore be appropriate to utilise 
relative muscle cut-points in populations with T2DM to ensure 
these individuals receive appropriate access to sarcopenia man-
agement interventions.  

SARCOPENIA AND TYPE 2 DIABETES 
MELLITUS

A link between T2DM and sarcopenia has been reported in 
several studies [19-22]. A recent cross-sectional study in 6,381 
adults aged >50 years reported that the prevalence of sarcope-
nia in those with T2DM was 28% versus 16% in counterparts 
without T2DM [19]. Sarcopenia is also associated with two-
fold higher odds of having diabetes (any subtype) [20]. Meta-
analyses have identified associations between characteristics or 
components of T2DM and sarcopenia. Increased glycosylated 
hemoglobin (HbA1c) and the presence of vascular complica-
tions have been associated with increased odds for sarcopenia 
(1.2-fold and 2.4-fold, respectively) in people with diabetes 

Table 1. Current operational definitions of sarcopenia

                     Low muscle strength Low muscle mass Poor physical performance

Revised  
EWGSOP 

HGS: <27 kg (men) and <16 kg (women)
Chair stand time: >15 sec (5 rises)

ALM: <20 kg (men) and <15 kg 
(women)

ALM/Height2: <7.00 kg/m2 (men) 
<5.5 kg/m2 (women)

Gait speed: 0.8 m/sec (4‐m course)
SPPB score: <8 points
TUG: >20 sec
400 m walk: ≥6 min or non-completion

Revised  
AWGS

HGS: <28 kg (men) and <18 kg (women) ALM/Height2: <7.0 kg/m2 (men) 
<5.4 kg/m2 (women)

Gait speed: <1 m/sec (6‐m course)
SPPB score: ≤9 points
Chair stand time: ≥12 sec (5 rises)

SDOC HGS: <35.5 kg (men) and <20 kg (women)
HGS/BMI: <1.05 kg/body weight (kg)/height 

(m2) (men) and <0.79 kg/body weight (kg)/
height (m2) (women)

HGS/TBF: <1.66 kg/TBF (kg) (men) and  
<0.65 kg/TBF (kg) (women)

HGS/arm lean mass: <6.08 kg/arm lean mass  
(kg) (men) and <3.26 kg/arm lean mass (kg) 
(women) 
HGS/body weight: <0.45 kg/body weight (kg) 
(men) and <0.34 kg/body weight (kg) (women)

- Gait speed: ≤0.8 m/sec

EWGSOP, European Working Group on Sarcopenia in Older People; HGS, hand grip strength; ALM, appendicular lean mass; SPPB, short 
physical performance battery; TUG, timed up-and-go; AWGS, Asian Working Group for Sarcopenia; SDOC, Sarcopenia Definitions and Out-
comes Consortium; BMI, body mass index; TBF, total body fat.
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[20,23], while those with T2DM have lower muscle strength 
and physical performance compared to counterparts without 
T2DM [21]. To date, few longitudinal studies have assessed the 
relationship between these diseases. The English Longitudinal 
Study of Ageing, including 5,953 older adults (mean age, 63 
years), reported risk for incident T2DM over 6 years decreased 
by 2% for every 1-kg increase in grip strength [22]. In 824 Japa-
nese older adults, individuals with T2DM had 2.5-fold higher 
odds of developing sarcopenia over 5 years compared to coun-
terparts without T2DM [24]. Further longitudinal studies are 
required to clarify causality in what appears to be a bidirection-
al relationship, particularly since T2DM and sarcopenia share 
common risk factors including low physical activity, malnutri-
tion, inflammation, mitochondrial dysfunction [25,26]. Myos-
teatosis may be a key mechanism linking many of these risk 
factors to the development of both sarcopenia and T2DM. 

MYOSTEATOSIS

‘Myosteatosis’ describes adipose depots within skeletal muscle, 
including intermuscular adipose tissue (IMAT), extracellular 
adipose tissue found beneath the fascia and in-between muscle 
groups (known as intramuscular adipose tissue), and intra-
myocellular lipids (IMCLs) [27]. Myosteatosis, which increases 
with age and is caused by factors including cellular senescence, 
obesity, lower physical activity and mitochondrial dysfunction, 
is a key risk factor for both T2DM and sarcopenia and may 
mediate their bidirectional relationship [27,28]. Studies have 
shown that both IMAT and specific IMCL species are positive-

ly associated with skeletal muscle insulin resistance [29-35], a 
key defect in T2DM [36]. The speculated mechanisms explain-
ing the link between myosteatosis and insulin resistance are 
complex and described elsewhere [37-41]. For example, the 
‘athlete’s paradox’, describes the phenomenon whereby endur-
ance-trained athletes have significantly higher IMCLs/diacylg-
lycerol content compared with obese or lean sedentary coun-
terparts, yet are markedly insulin-sensitive [37,38].

Although higher muscle lipid content is a beneficial adapta-
tion in trained endurance athletes, higher IMAT is associated 
with poorer physical performance in older adults [42-45], 
which appears to be independent of muscle mass [43]. IMAT 
also appears to be a stronger predictor of mobility than muscle 
mass [42] and is associated with higher fall risk in older adults 
[46,47]. Muscle health may be adversely affected by IMAT 
through increased localised inflammation and impaired con-
tractility [29,48], but further research is required to obtain ad-
ditional mechanistic insights into these relationships. The links 
between myosteatosis, fatty acid (FA) metabolism, insulin re-
sistance and muscle function may be crucial for understanding 
the etiology of, and relationship between, T2DM and sarcope-
nia (Fig. 1). 

INTERVENTIONS FOR IMPROVING 
METABOLIC AND MUSCLE HEALTH 

Diet and nutrition
Evidence-based dietary recommendations are available for the 
prevention and management of T2DM and sarcopenia. How-

Fig. 1. Major causes and outcomes of myosteatosis in older adults with type 2 diabetes mellitus and sarcopenia.
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ever, recommendations for these diseases can at times be con-
flicting, especially in older adults. Dietary recommendations 
are discussed below with consideration of how these can be im-
plemented in older adults who have T2DM and/or sarcopenia. 

Dietary approaches for weight loss 
Weight loss achieved through lifestyle changes (i.e., diet and 
exercise) is a first-line treatment for T2DM in adults with over-
weight or obesity (BMI ≥25 kg/m2) [49]. However, the appro-
priateness of using BMI cut-offs for older adults aged ≥65 
years has been disputed, as emerging evidence has suggested 
that a higher BMI may be protective against mortality in this 
population (the “obesity paradox”) [50]. This is supported by a 
meta-analysis (n=197,940; follow-up 5 years) showing that 
older adults with BMI between 24.0 and 30.9 kg/m2 had the 
lowest mortality risk [51]. This should be considered when 
prescribing weight loss to older adults with T2DM and over-
weight or obesity.

The effectiveness of hypocaloric diets (2,100 to 4,200 kJ/day 
deficit over 26 to 52 weeks) on weight loss in older adults with 
obesity (range, –2.3 to –10.7 kg) has been shown in a systemat-
ic review of randomised controlled trials (RCTs) [52]. Howev-
er, both intentional and unintentional weight loss lead to mus-
cle and bone loss [53,54], which exacerbates age-related de-
clines in musculoskeletal health and physical function [55]. 
For this reason, the European Society for Clinical Nutrition 
and Metabolism (ESPEN) has recommended that for older 
adults with overweight (BMI ≥25 and <30 kg/m2), weight loss 
via hypocaloric diets should be avoided, and dietary strategies 
should be aimed at weight maintenance [56]. However, for 
older adults with obesity (BMI ≥30 kg/m2) and associated dis-
orders (e.g., T2DM) weight loss via hypocaloric diets may be 
recommended depending on the risk-benefit profile for the 
person’s metabolic health, comorbidities, functioning, and 
quality of life [56]. 

Several dietary approaches can effectively induce weight loss 
for management of T2DM in adults. The recent Diabetes Re-
mission Clinical Trial (DiRECT) using a ‘very low-calorie diet’ 
(VLCD; 3,500 kJ/day via total meal replacement for 3 months 
followed by structured food reintroduction) reported reduc-
tions in body weight (10.0 kg) and mean HbA1c (0.9%), with 
46% of participants in the intervention group achieving T2DM 
remission at 12 months [57]. Despite their effectiveness, 
VLCDs are not recommended for older adults as they may 
lead to malnutrition and declines in muscle mass and physical 

function [56]. Accordingly, ESPEN guidelines advise that hy-
pocaloric diets for older adults should not exceed a daily ener-
gy reduction of approximately 2,100 kJ/day and should main-
tain a minimum energy intake of 4,200 to 5,040 kJ/day. Impor-
tantly, diets should be well-balanced and ensure sufficient pro-
tein intake (at least 1 g/kg body weight/day) [56]. 

The Mediterranean diet may be a suitable weight loss dietary 
approach for older adults, as it is well-balanced and can be 
adapted to align with ESPEN’s recommended energy and pro-
tein requirements. The Mediterranean diet is characterised by 
high consumption of fruits, vegetables, legumes, and who-
legrains; with olive oil as the main source of fat; and fish and 
poultry as the principal source of protein [58]. Meta-analyses 
of RCTs have suggested that the Mediterranean diet can induce 
weight loss and reduce HbA1c levels in adults with T2DM [58-
60]. Further, emerging evidence suggests an association be-
tween greater adherence to the Mediterranean diet and protec-
tion against muscle mass loss and frailty [61,62]. 

Time-restricted eating (TRE) is a novel dietary approach that 
can achieve moderate energy intake restriction in older adults 
[57]. TRE can promote a small amount of weight loss in adults 
with overweight and obesity, by limiting eating, and therefore, 
energy intake, to a defined period of the 24-hour day (typically 
<12 hours) [63]. Qualitative studies have reported high satis-
faction with TRE in adults with T2DM, noting it is relatively 
easy to follow as it does not require calorie counting nor chang-
es to the types of food consumed [64,65]. A pilot study involv-
ing 10 older adults with overweight/obesity (mean age, 77.1 
years; mean BMI, 34.1 kg/m2) reported high adherence (84%) 
to a 4-week TRE intervention with a self-selected 8-hour feed-
ing window [66]. Mean weight loss over 4 weeks was 2.6 kg (no 
change in fasting glucose levels), with minor adverse events in-
cluding decreased energy levels reported [66,67]. A major con-
cern with prescribing TRE in individuals with T2DM is the 
risk of hypoglycemic events during fasting windows, especially 
in those taking sulfonylureas or exogenous insulin [68,69]. 
However, the few TRE trials to date that recruited participants 
taking sulfonylureas or insulin have reported no hypoglycemic 
events [70], and most reported reductions in body weight and 
improvements in glycemic indices [71-73]. TRE may therefore 
be safe and effective in individuals with T2DM, especially with 
frequent blood glucose monitoring, but additional clinical tri-
als are needed including muscle mass as a primary endpoint. 

The risks and benefits of weight loss need to be carefully eval-
uated in older adults with obesity and T2DM. If weight loss is 
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warranted, prevention of malnutrition and preservation of mus-
cle mass is integral when selecting a suitable dietary approach to 
reduce risk for sarcopenia. Supplementation of specific nutri-
ents and performing exercise may therefore be important com-
ponents of weight loss regimes for this population [56]. 

Protein, vitamin D, and omega 3 fatty acids
Proteins contain amino acids essential for muscle protein syn-
thesis and there is some evidence to suggest increasing protein 
intake improves blood glucose management [74-77]. A recent 
meta-analysis of 12 RCTs (n=1,138) reported that consuming 
a high-protein diet had no beneficial effects on fasting plasma 
glucose, but it had a positive effect on homeostasis model as-
sessment of insulin resistance (HOMA-IR) in individuals with 
T2DM [78]. Inconsistent findings in included RCTs could be 
related to factors such as differences in basal protein intake, 
types of protein consumed, or timing of intake. A subsequent 
meta-analysis of acute studies showed that whey protein sup-
plementation decreased postprandial glycemia at 60 and 120 
minutes compared with placebo [79]. This occurs due to the 
incorporation of protein into carbohydrate-containing meals 
delaying the release of glucose and may assist with managing 
blood glucose levels in this population [80]. Increasing protein 
intake to 1.2 to 1.6 g/kg of body weight promotes healthy ag-
ing, appetite regulation, weight management and helps main-
tain muscle mass and strength in older adults [81]. Protein 
supplementation supporting intakes exceeding approximately 
1.2 g/kg of body weight may also enhance exercise-related im-
provements in muscle strength, mass and performance, partic-
ularly in those with low or inadequate basal intakes [82-85].

Vitamin D receptors are located within the pancreas and 
skeletal muscle and vitamin D deficiency is associated with 
poor metabolic and muscle health and physical performance 
[86-88]. However, these associations may be partly explained 
by confounding factors. For instance, obesity is common in 
T2DM, and it is a risk factor for vitamin D deficiency because a 
larger body size leads to greater volumetric dilution of vitamin 
D into tissues [89]. Low physical activity levels contribute to 
poor physical performance and sarcopenia, but they also lead 
to lower sunlight exposure, which is a risk factor for vitamin D 
deficiency. Nevertheless, there is some evidence from meta-
analyses of RCTs showing that vitamin D supplementation im-
proves glycemic indices in individuals with [90] and without 
T2DM [91], and also those with prediabetes [92,93], but not in 
populations with overweight or obesity [94]. With respect to 

improving muscle mass and function, older meta-analyses have 
reported beneficial effects, but only in individuals with 25-hy-
droxyvitamin D levels below 25 or 30 nmol/L [95,96]. Two re-
cent meta-analyses showed no effect or adverse effects [97,98] 
on physical performance (short physical performance battery 
[SPPB] scores and timed up-and-go [TUG] times), which is 
supported by large vitamin D trials showing increased fall risk 
following high-dose supplementation [99,100]. Most studies 
identifying non-skeletal benefits following vitamin D supple-
mentation reported them in populations with, or at risk of, 
moderate or severe vitamin D deficiency [90,95,96]. Thus, there 
appear to be very few benefits of vitamin D supplementation  
in populations with adequate vitamin D levels. Although there 
is some evidence that vitamin D holds promise as an adjunct 
therapy to enhance exercise-related improvements in physical 
function [101], recent RCTs have reported no benefits [102-
104].

Long-chain omega-3 FA have anti-inflammatory benefits 
which may improve glycemic control and attenuate age-associ-
ated muscle loss, as both T2DM and sarcopenia are associated 
with chronic low-grade inflammation [105-108]. A meta-anal-
ysis of 45 RCTs showed that omega-3 FA supplementation led 
to significant improvements in lipid profile (decreased low-
density lipoprotein and very low-density lipoprotein cholester-
ol and triglycerides) and reduced HbA1c, but changes in other 
glycemic indices such as fasting glucose, insulin levels and 
HOMA-IR were non-significant in individuals with T2DM 
[109]. Furthermore, the benefits on HbA1c became non-sig-
nificant in a sensitivity analysis omitting two outliers showing 
very large treatment effects [109]. Other meta-analyses have 
shown no effect of omega-3 FA supplementation on glycemic 
indices [110,111]. The effects of omega-3 FA supplementation 
on muscle mass and function are also unclear. One of the larg-
est meta-analyses conducted to date (66 studies) reported ben-
eficial effects of omega-3 FA supplementation on some muscle 
mass and function outcomes (skeletal muscle mass and quad-
ricep strength); however, other outcomes such as mid-arm 
muscle circumference and hand grip strength were unchanged 
[112]. Current evidence does not support the provision of 
omega-3 FA supplementation for managing T2DM or sarco-
penia. 

Given that older adults are at high risk of malnutrition and 
some individuals struggle with maintaining oral intake of food 
to sustain diet quality, multi-supplement interventions are 
promising in this population [113-115]. Multi-supplements 
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may be beneficial if doses are not reduced for convenience 
(e.g., taking a single multi-supplement with several nutrients at 
low doses, as opposed to taking individual nutrients at recom-
mended/higher doses). However, multi-supplement interven-
tions are unlikely to be beneficial in those who have an ade-
quate dietary intake from well-balanced diets. 

Physical activity
Physical activity, defined as any bodily movement produced by 
skeletal muscles that results in energy expenditure [116], plays 
a significant role in the prevention and management of T2DM 
and sarcopenia. The World Health Organization (WHO) rec-
ommends that older adults with chronic conditions accumu-
late 150 to 300 minutes per week of moderate to vigorous in-
tensity physical activity (MVPA) and limit sedentary time 
[117]. Canada has adopted 24-hour movement guidelines for 
older adults which include similar MVPA targets and addi-
tional guidance to limit sedentary time to 8 hours or less, and 
to break up periods of sitting as often as possible [118]. How-
ever, large observational studies using objective measures indi-
cate approximately 80% to 95% of older adults do not achieve 
the minimum target for MVPA [119], and can spend up to 
65% to 80% of their waking day sedentary [120]. Given low 
physical activity and high sedentary behavior are prospectively 
associated with worse health outcomes in older adults includ-
ing development of T2DM [121], cardiovascular disease [122], 
lower muscle strength and power [123], and all-cause mortali-
ty [124], strategies to get older adults moving more and sitting 
less are of paramount importance.

Regular physical activity is recommended for management 
of glucose control in older adults with T2DM [125,126]. How-
ever, meta-analyses indicate that interventions aimed at chang-
ing people’s behavior to increase physical activity with limited 
focus on other interventions, such as consuming a hypocaloric 
diet, generally do not improve glycemic markers [127,128]. 
One meta-analysis demonstrated that physical activity inter-
ventions were more successful at improving glycemic control if 
they included structured/supervised exercise as opposed to 
behavioral intervention alone [127], and exercise will be dis-
cussed later in this review. 

In recognition of the need to prevent frailty, falls, and fragility 
fractures in older adults, the WHO also recommends that: “As 
part of their weekly physical activity, older adults should do var-
ied multicomponent physical activity that emphasizes function-
al balance and strength training at moderate or greater intensity, 

on 3 or more days a week, to enhance functional capacity and to 
prevent falls” [116]. A recent meta-analysis in older adults (112 
studies; n=43,796) with and without chronic diseases showed 
that higher total physical activity levels and MVPA were associ-
ated with better hand grip strength and chair stand times [123]. 
Associations were also stronger between higher physical activity 
levels and higher lower-limb muscle strength and power mea-
sures, compared with upper-limb measures [123]. Physical ac-
tivity interventions have both short- and long-term benefits for 
physical performance. In the Look Action for Health in Diabetes 
(AHEAD) trial, adults with T2DM and overweight or obesity 
(aged 45 to 76 at enrolment; BMI ≥25 kg/m2) were randomised 
to either intensive lifestyle intervention (ILI; individual weight 
loss goal of ≥10% and physical activity goal of ≥50 minutes per 
week in the first month and ≥175 minutes per week by the end 
of 6 months) or diabetes support and education (DSE; control) 
[129]. Between years 1–8, self-reported physical function re-
mained significantly higher in the ILI group compared with 
DSE [130]. At 8-year post-randomisation, the ILI group had su-
perior SPPB scores and gait speed compared with DSE [131]. At 
approximately 11 years post-randomisation and 1.5 years after 
the intervention ended, the ILI group still had 26% lower odds 
of having slow gait speed (<0.8 m/sec) compared with DSE 
[132]. Participants in the ILI group had considerable support 
from a lifestyle coach throughout the study, which likely con-
tributed to long-term physical performance benefits. 

Sedentary behavior
Interventions aimed at increasing MVPA alone can inadver-
tently lead to behavioral compensation whereby light-intensity 
activity is decreased and sedentary behavior is increased [133-
135]. It is possible that metabolic and muscle health benefits of 
physical activity interventions can be blunted or eliminated by 
compensatory increases in sedentary behavior. High levels of 
MVPA (60 to 75 minutes per day) are required to offset the 
deleterious effect of sitting for >8 hours per day on all-cause 
mortality [136]. However, these levels of MVPA still may not 
be sufficient to offset the effects of sedentary behavior on meta-
bolic health in older adults. A recent study of 54 extremely ac-
tive older adults (mean age, 71 years) demonstrated that high 
volumes of sedentary behavior (9.4 hours/day) adversely influ-
ences metabolic health, even in the presence of high volumes 
of MVPA (2.6 hours/day) [136]. This suggests interventions 
should target both increasing MVPA and reducing sedentary 
behavior for optimal improvement in metabolic health in older 



Management of T2DM and sarcopenia

725Diabetes Metab J 2023;47:719-742 https://e-dmj.org

adults.
Several short-term studies have investigated the acute meta-

bolic effects of intermittent breaks in prolonged sitting in older 
adults (mean age ≥60 years) with T2DM [137-141]. These 
studies have reported reduced postprandial glucose and/or in-
sulin levels [137,140,141], improved 22 to 24 hours continuous 
glucose monitoring profiles [138-140,142], and improved vas-
cular function [143]. It is thought that intermittent activity im-
proves glycemic control partly because it can be spread across 
multiple postprandial periods. Some of these studies even 
compared intermittent physical activity spread across the day 
to an energy-matched discrete bout of exercise demonstrating 
comparable [139], or superior glucose-lowering effects with 
intermittent physical activity [138,144]. This suggests that an 
effective intervention for improving glucose control in older 
adults with T2DM is to avoid prolonged periods of sitting and 
to spread physical activity across the day, particularly after 
meals. However, while there is evidence of small improvements 
in glycemic indices in some long-term studies [145-147], fur-
ther RCTs are needed to confirm this. 

Evidence from longitudinal observational studies with objec-
tive measures suggests that reducing sedentary behavior is as-
sociated with improved physical function and reduced falls risk 
in older adults [123,148]. However, other longitudinal observa-
tional studies in older adults have shown that higher amounts 
of MVPA are associated with a decreased likelihood of sarcope-
nia and/or its components (low appendicular lean mass and 
grip strength and slow TUG time), regardless of the amount of 
sedentary behavior [149,150]. Evidence from interventions 
specifically targeting sedentary behavior is inconclusive [151-
153]. Some demonstrate improved physical function [151-153], 
even in the absence of observed reductions in sitting time [153], 
while others report reductions in sedentary time do not affect 
physical function [154]. Nevertheless, interventions specifically 
targeting reductions in sedentary behavior may be more ac-
ceptable to some older adults than interventions that increase 
MVPA [155]. 

Taken together, evidence suggests both increasing MVPA 
and reducing sedentary behavior improves metabolic and 
muscle health in older adults. Additional high-quality evidence 
from large RCTs is needed to better inform physical activity 
guidelines for those with T2DM and sarcopenia.

Exercise 
Exercise is a planned, structured, and repetitive subset of phys-

ical activity with the objective to improve or maintain physical 
fitness [116]. Exercise interventions have well-established ben-
efits for multiple health outcomes, including metabolic and 
musculoskeletal health markers such as insulin sensitivity 
[156,157], glycemic control [158], skeletal muscle mass [159], 
strength [160,161], and bone mass [162].

The benefits of exercise interventions may be influenced by 
various factors, including the mode/type of exercise performed 
(e.g., aerobic vs. resistance exercise) and prescription-related 
factors such as frequency, intensity, and duration of exercise 
sessions. Aerobic exercise is a form of repetitive/rhythmic struc-
tured physical activity that uses large muscle groups and can be 
maintained continuously, it includes activities such as jogging, 
cycling and swimming. Resistance or muscle-strengthening  
exercise involves repetitive muscular contractions against ex-
ternal resistance, such as lifting weights or body weight alone. 
Short- and long-term physiological adaptations to aerobic and 
resistance exercise are somewhat distinct, with aerobic exercise 
primarily associated with improvements in cardiometabolic 
health markers (such as cardiorespiratory fitness, insulin sensi-
tivity, and glycemic control), and resistance exercise mainly tar-
geting aspects of musculoskeletal health (such as skeletal mus-
cle mass, strength, and bone mineral density). There is, howev-
er, some cross-over in the specificity of responses and adapta-
tions to aerobic and resistance exercise, particularly following 
shorter-term interventions and in those with lower baseline fit-
ness levels [158,163,164]. Understanding the role of exercise pre-
scription-related factors in addressing consequences of T2DM 
and/or sarcopenia can inform practical guidelines for manage-
ment of these diseases. 

Several RCTs have investigated whether exercise interven-
tions (up to 96 weeks), involving either aerobic or resistance 
training alone, or in combination, can improve markers of 
metabolic health in older adults with T2DM [165-170]. Over-
all, these studies provide evidence that in those with T2DM, 
both supervised aerobic and resistance training are effective 
for improving HbA1c and fasting blood glucose levels [171]. 
In a RCT of 100 adults aged ≥55 years with T2DM, the effects 
of three different 16-week exercise interventions (aerobic exer-
cise, resistance exercise, or a combination of both [same inten-
sity but half the volume of other exercise groups]) on various 
metabolic health markers were compared with a control group 
encouraged to perform low-to-moderate intensity aerobic ac-
tivities (e.g., brisk walking, cycling) for 150 minutes per week 
[165]. At follow-up, all exercise conditions showed improved 
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metabolic health markers from baseline, including reduced 
fasting plasma glucose, HbA1c, fasting plasma insulin, and 
HOMA-IR, with no differences between conditions (including 
vs. the control condition, which showed no within-group 
changes in these outcomes). These improvements occurred in-
dependent of weight loss. Although both aerobic and resis-
tance training appear to independently improve glycemic con-
trol, a network meta-analysis showed that the combination of 
both is more effective for reducing HbA1c than either mode 
alone in individuals with T2DM [172]. 

The benefits of resistance training for improving muscle 
mass and function in older adults with sarcopenia are well-es-
tablished and it is a first-line treatment for this condition [173, 
174]. A recent systematic review and meta-analysis of 26 stud-
ies in 1,191 older individuals with sarcopenia (age range, 60.6 
to 89.5 years) [173] found resistance training was effective for 
improving knee extensor strength and measures of physical 
function (gait speed, TUG test, but not chair stand test perfor-
mance). Resistance training prescription factors, such as fre-
quency, intensity, and dose, may influence the effectiveness of 
such interventions. Indeed, a meta-analysis of 15 studies found 
that in older adults (mean age, 67.8 years), improvements in 
muscle strength and size following resistance training tended 
to be greater when involving higher loads (approximately 80% 
one-repetition maximum [1-RM]) compared with lower loads 
(approximately 45% 1-RM) [175]. However, these effects were 
substantially smaller in studies that work-matched both high-
er- and lower-load resistance training protocols [175].

Pragmatic and time-efficient approaches including “exercise 
snacking” may be effective for improving markers of glycemic 
control [176]. “Exercise snacks” may be considered as isolated 
bouts of exercise lasting ≤1 minute and performed multiple 
times throughout the day [177]. Various studies have shown 
the efficacy of exercise snacking approaches [176,178-180] for 
interrupting short-term sedentary behavior patterns and im-
proving cardiometabolic health markers in preclinical and 
clinical populations. While some studies have found short-
term benefits of exercise snacking for improving indices of 
metabolic health and glycemic control [176,178-180], there is 
less evidence for the long-term efficacy of this approach. 

A few studies have also explored the effects of exercise 
snacking on musculoskeletal health in older adults [181-183]. 
A pilot study in older adults (age range, 65 to 80 years) showed 
that twice-daily “exercise snacks” (five bodyweight exercises 
performed for 1 minute with 1-minute passive recovery be-

tween exercises; 9 minutes total session duration) performed 
for 28 consecutive days improved 60-second sit-to-stand per-
formance, and large effect sizes were noted for the difference in 
the change in leg press power and thigh muscle cross-sectional 
area versus control [182]. Another pilot study [181] using a 
similar resistance-based “exercise snacking” protocol in older 
adults (mean age, 70 years) noted positive findings regarding 
the feasibility and acceptability of this exercise approach, but 
there was little evidence of physical function benefits versus 
control (no exercise; study was not powered to detect differ-
ences in physical function) when assessed remotely after 4 
weeks. Overall, while the limited available evidence has shown 
mixed benefits of exercise snacking approaches for improving 
measures of metabolic and musculoskeletal health, the positive 
findings regarding the feasibility and acceptability of these ap-
proaches highlight the need for further work to determine and 
improve their efficacy in older adults, particularly those with 
sarcopenia and/or T2DM [181-184].

Combined exercise and hypocaloric diet interventions
As described earlier, weight loss may lead to muscle mass loss-
es, but is beneficial for metabolic health in older adults with 
T2DM, and exercise can augment weight loss-related metabol-
ic health improvements [169]. In sedentary older adults (aged 
60 to 80 years) with overweight and T2DM consuming a hy-
pocaloric diet, performing supervised and structured high-in-
tensity resistance training (nine exercises; eight to 10 repeti-
tions; 75% to 85% 1-RM) further reduced HbA1c levels after 
both 3 and 6 months (–0.5% and –0.8%, respectively) [169]. In 
160 older adults with obesity consuming a hypocaloric diet, 
completing concurrent combined aerobic and resistance train-
ing led to an 86% improvement in insulin sensitivity index, 
which was significantly better than completing either exercise 
mode alone [185]. 

Exercise also influences changes in muscle mass, IMAT and 
physical function that occur following hypocaloric diet inter-
ventions. In 107 older adults with obesity consuming a hypo-
caloric diet for 12 months, combined resistance and aerobic 
exercise led to greater improvements in a composite physical 
performance score compared with no exercise (21% vs. 12%, 
P<0.001) [186]. Another study in older adults with obesity 
(n=160) comparing different exercise modes during a hypoca-
loric diet intervention showed that combined resistance and 
aerobic exercise led to greater improvements in a composite 
physical function score (21%) compared with aerobic (14%) 
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and resistance exercise (14%), although this may be attributed 
to the higher training dose in this group [187]. Interestingly, 
those completing aerobic exercise had significantly greater lean 
mass losses (–5%) than the resistance exercise (–2%) and com-
bined resistance and aerobic exercise (–3%) groups [187]. In 
support of the abovementioned findings, a recent meta-analy-
sis showed that resistance exercise attenuates muscle mass 
losses that occur following weight loss [53]. Only one RCT has 
compared changes in IMAT between older adults with obesity 
undertaking a hypocaloric diet intervention alone, or in com-
bination with resistance or aerobic exercise for 18 months 
[188]. The greatest decreases in trunk and thigh IMAT area 
were observed in the group performing concurrent aerobic 
training, followed by the resistance training group, and then 
the no exercise training group (between-group differences 
were significant but post-hoc tests were non-significant). All 
groups had significant improvements in trunk and thigh 
IMAT area relative to baseline [188]. More studies are required 
to determine optimal exercise prescriptions for improving 
metabolic and muscle health in older adults with T2DM and/
or sarcopenic obesity consuming a hypocaloric diet. 

Medications
T2DM is managed using several types of medications (e.g., big-
uanides, dipeptidyl peptidase inhibitors, sodium-glucose co-
transporter-2 inhibitors, sulfonylureas, thiazolidinediones, insu-
lin) and their mixed effects on muscle health and function have 
been described previously [6,189]. However, use of new genera-
tion incretin-based medications has increased recently due to 
their ability to treat both poor glycemic control and obesity. 
Glucagon-like peptide-1 (GLP-1) receptor agonists are the most 
common incretin-based medications, which lower glucose lev-
els by stimulating insulin secretion from pancreatic β-cells 
[190]. They also suppress appetite, delay gastric emptying, im-
prove satiety, and decrease glucagon secretion [190]. In a recent 
RCT of 1961 adults with overweight and obesity, once-weekly 
subcutaneous semaglutide (2.4 mg) led to a 15% decrease in 
body weight over 68 weeks compared with a 2.4% reduction in 
placebo (both groups also underwent a lifestyle intervention in-
volving 500 kcal/day energy restriction and increased physical 
activity [150 minutes per week] was encouraged) [191]. Ap-
proximately 86% of participants had clinically significant weight 
loss (≥5%) in the semaglutide group versus 32% in placebo and 
these participants also had improvements in fasting glucose, 
HbA1c, and self-reported physical function [191]. While a sig-

nificant decrease in absolute lean (muscle) mass was observed, 
percentage lean mass increased, relative to placebo [191]. An-
other incretin-based medication, tirzepatide, is a dual glucose-
dependent insulinotropic peptide and GLP-1 agonist. Tirzepa-
tide leads to similar improvements in the abovementioned out-
comes in individuals with overweight and obesity over a similar 
timeframe [192]. In a recent head-to-head study, tirzepatide led 
to greater reductions in body mass and HbA1c compared with 
semaglutide in individuals with T2DM, although the semaglu-
tide dose was 1 mg (once-weekly) [193]. Dual-agonists appear 
to confer additional benefits over mono-agonists, and other 
dual- and tri-agonists currently in clinical trials show great 
promise (NCT04478708 [194,195]). Future studies on these 
medications would benefit from comprehensively measuring 
physical function outcomes and prescribing targeted exercise to 
attenuate weight loss-related declines in muscle mass. 

Currently there are no approved pharmacological treatments 
for sarcopenia; however, several medications have shown po-
tential efficacy in recent clinical trials. Myostatin-based medi-
cations are of great interest given the inhibition of this myokine 
significantly increases muscle mass in animal knockout/loss-
of-function models [196,197]. Myostatin propeptides, soluble 
receptors, antibodies, and endogenous antagonists have been 
developed and some have undergone testing in clinical trials 
[198-200]; myostatin-based treatments consistently increase 
muscle mass, but they have limited or no benefits for physical 
function, which is a more clinically relevant outcome for pa-
tients [198-200]. Recent trials demonstrated that bimagrumab 
can decrease fat mass and improve insulin sensitivity and 
HbA1c in individuals with insulin resistance and T2DM [201, 
202], but larger trials are required to establish the safety and ef-
ficacy of this treatment. Testosterone treatment is effective for 
increasing muscle mass and to a lesser degree, muscle strength, 
but similar to myostatin-based agonists there is inconsistent 
evidence supporting beneficial effects on physical performance 
in older populations with and without T2DM [203,204]. There 
are no clinical trials assessing efficacy of testosterone for im-
proving muscle health in older adults with diagnosed sarcope-
nia. Testosterone also decreases risk of incident T2DM in mid-
dle-aged and older men [205], with glycemic improvements 
being mediated to the greatest degree by treatment-related 
changes in fat mass [206]. Despite these positive findings, there 
is still insufficient evidence to support routine use of this treat-
ment in older adults with T2DM without pathological hypogo-
nadism [205,207]. To overcome adverse androgenic/virilising 
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side effects associated with testosterone [208,209], selective an-
drogen receptor modulators (SARMs) have been developed to 
stimulate anabolic effects in skeletal muscle and other tissues 
(e.g., bone) while minimising adverse effects on other tissues 
(e.g., prostate) [210,211]. Only one study has explored the ef-
fects of a SARM in a population with sarcopenia [212]. In 170 
postmenopausal women (aged >65 years), a SARM (MK-
0773) taken for 6 months led to a 0.6 kg increase in appendicu-
lar lean mass relative to placebo, but it did not lead to any im-
provements in muscle strength or performance [212]. SARMs 
have shown some promise in other populations with respect to 
increasing muscle mass, but effects on physical function are 
unclear [213,214]. Increasing muscle mass via pharmacological 
treatments provides limited functional benefits, so the addition 
of targeted exercise (particularly resistance training), will likely 
be key in achieving physical function-related endpoints in fu-
ture clinical trials. 

Endoscopic bariatric therapies 
Bariatric surgery (BS) is the most effective intervention for 
long-term weight loss for individuals with obesity and its co-
morbidities [215]. BS-induced weight loss improves glycemic 
control with T2DM remission rates ranging from 69% to 90% 
depending on the type of surgery [216,217]. Achievement of 
T2DM remission following BS is multi-factorial but largely 
driven by weight loss-related improvements in insulin sensitivi-
ty and β-cell function, and there are also documented changes 
in gut physiology, bile acid metabolism, and gut microbiota that 
appear to have benefits on glycemia [218]. Although the benefi-
cial effects of BS on metabolic health are well-established, its ef-
fect on muscle health is unclear.

A prospective cohort study in 47 adults (mean age, 42 years) 
who underwent Roux-en-Y gastric bypass (RYGB) showed 
that total lean mass decreased by 13% and absolute hand grip 
strength decreased by 9%, however, relative hand grip strength 
(normalized to BMI) increased by 32% [219]. The same study 
reported an increase in gait speed (0.1 m/s) and improved 400 m 
walk time [219]. A recent meta-analysis showed that RYGB re-
sults in greater 12-month body weight and fat loss, but similar 
losses in lean mass, compared with adjustable gastric band, al-
though this was based on only two RCTs [220]. Non-surgical 
intragastric balloons, involving endoscopic insertion of a sili-
con fluid-filled balloon into the stomach causing earlier feel-
ings of satiety [221], also lead to lean mass losses [222], despite 
improving glycemic control [223]. Maintaining muscle mass 

should therefore be a key focus following BS.
Exercise augments BS-related metabolic, body composition 

and physical function improvements. A recent RCT showed that 
62 adults with obesity (age range, 18 to 55 years) randomised to 
combined resistance and aerobic training following RYGB had 
greater improvements in insulin sensitivity (Matsuda index, 
325%) than those randomised to standard care following 
RYGB [224]. A meta-analysis showed that exercise training 
(aerobic and/or resistance exercise and/or high-intensity inter-
val training) led to greater total body mass (mean difference 
[MD], –1.8 kg) and fat mass (MD, –2.1 kg) losses, but similar 
lean mass losses (MD, 0.7 kg), compared with controls receiv-
ing standard care, following BS [225]. Exercise also improved 
muscle strength (based on different strength tests) and endur-
ance (based on different walking tests) [225]. Although per-
forming any type of exercise following BS is likely to be benefi-
cial, performing resistance training is particularly important 
for attenuating losses in muscle mass and function, especially 
in older patients. 

EMERGING APPROACHES TO FACILITATE 
MANAGEMENT OF T2DM AND SARCOPENIA

Digital health technologies
The WHO describes digital health as “the field of knowledge 
and practice associated with the development and use of digital 
technologies to improve health.” Digital health technologies are 
an effective and valued tool for delivering and monitoring re-
mote diet and exercise interventions targeting glycemic control 
in older adults with and without T2DM [226,227]. These inter-
ventions use delivery approaches such as video-conferencing, 
phone calls, text messages, smartphone and tablet-based appli-
cations and other digital inputs [228], and improve practitio-
ner-patient communication and support, as well as access to 
medical services [229]. The Weight Achievement and Intensive 
Treatment (Why WAIT) 12-week multidisciplinary weight 
management program was delivered via a smartphone applica-
tion and video-conferencing during the coronavirus disease 
2019 (COVID-19) pandemic [230]. This intervention for indi-
viduals with obesity (BMI, 30 to 45 kg/m2) and diabetes (type 1 
or 2) [231] involved a hypocaloric diet and exercise, as well as a 
cognitive-behavioral intervention and group education. The  
16 participants who completed the digital health program had 
similar changes in body weight (–6.8 kg vs. –7.4 kg), HbA1c 
(–1.0% vs. –1.03%) and other metabolic outcomes compared 
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with 22 participants who completed the in-person program 
before the pandemic [230]. Several other studies involving 
web-based dietary interventions have also reported improve-
ments in HbA1c after 4 months (–0.30%) [232], 12 months 
(–0.24%) [233], and 5 years (–0.29%) [234] in adults and older 
adults with T2DM. A recent systematic review found that 20 
out of 21 studies that delivered digital interventions for the 
management and prevention of T2DM showed significant 
within-group improvements in at least one key T2DM-related 
outcome (e.g., HbA1c, blood glucose levels, weight loss) and 
85% (11/13) of parallel-group studies showed a significant im-
provement compared with control [235].

Only a few studies have explored effects of digital health in-
terventions on muscle mass and/or function in older adults. A 
recent 12-month RCT explored the feasibility, acceptability 
and efficacy of the successful Lifestyle integrated Functional 
Exercise (LiFE) intervention (involving the incorporation of 
strength and balance exercises into daily activities) [236] in 
older adults aged between 61 and 70 years, delivered via smart-
phone and smartwatch [237]. The program appeared to be fea-
sible with 58 out of 61 participants in the virtual group using 
the application for an average of 180 days, but had no benefits 
on hand grip strength or gait speed [237]. Another 12-week 
RCT assessed the effects of a home-based exercise (resistance 
band-based exercises, 10 repetitions and five sets, performed 3 
days per week) and hypocaloric dietary intervention (1,200 
kcal/day) delivered via digital communication applications 
(e.g., LINE, FaceTime) on muscle mass and function, in older 
adults (≥55 years) with overweight or obesity (BMI range, 27 
to 35 kg/m2) and knee osteoarthritis [238]. Participants were 
randomised into three groups; diet alone, exercise alone, and 
combined exercise and diet. Lower-limb muscle mass increased 
in the exercise alone group and decreased in the other two 
groups (losses were attenuated in combined exercise and diet) 
[238]. TUG times improved in all groups and significantly 
more in the combined exercise and diet group compared with 
exercise alone [238]. It is currently unclear how digital health 
interventions affect muscle health and function in older adults 
with T2DM and/or sarcopenia. 

Collectively, the above studies demonstrate that digital health 
interventions can have similar efficacy compared to in-person 
interventions; however, digital health technologies can be chal-
lenging for patients, and may require resource-intensive train-
ing and support by a health professional [234,239]. A recent 
scoping review evaluated barriers to digital health in 14 qualita-

tive studies of older adults (≥60 years) and identified that small 
screens and text size, reduction of fine motor control and cog-
nitive concerns related to memory, remembering passwords 
and logging in were commonly cited concerns [240]. However, 
older adults can overcome barriers to engaging with digital 
technology. An observational study (n=2,169) analysing data 
from a fully automated digital health platform reported that 
older adults had significantly more digital coaching conversa-
tions, logged more meals, and recorded more device measure-
ments than younger users (35 to 64 years) over 12 months 
[241]. Further research is required to determine the efficacy 
and feasibility of multicomponent digital health interventions, 
using different technologies, and how these can enhance older 
adults’ self-management of sarcopenia and/or T2DM.

Health literacy
T2DM and sarcopenia are both chronic diseases where self-
management is the primary means of treatment. Individuals 
often need to make major lifestyle changes to adhere to dietary 
and physical activity recommendations and follow new medi-
cation regimens. These behavior changes can be difficult to ini-
tiate and maintain [242], and individuals require health litera-
cy (HL) skills to self-manage their health [243]. HL is a multi-
dimensional concept defined as ‘the personal characteristics 
needed for an individual to access, understand, appraise and 
use information about health and health care services to make 
decisions about health’ [244]. The risk of developing T2DM is 
increased in individuals with low or inadequate HL [245,246]. 
A meta-analysis of 29 observational studies (n=13,457 partici-
pants) reported that almost 33% of patients with T2DM have 
low HL [247]. This is problematic because higher HL is associ-
ated with greater T2DM health knowledge and glucose control 
[248,249] and increased uptake of positive self-management 
behaviors such as medication adherence, physical activity and 
healthy diet [250-253].

In a recent systematic review of 14 RCTs [254], HL-focused 
interventions led to significant improvements in T2DM health 
knowledge, quality of life, physical activity levels, and health-
related self-efficacy, although inconsistent results were seen 
across self-management strategies such as glycemic control, 
foot care, diet management, and medication adherence [254]. 
However, this review was highly education-focused and in-
cluded studies that interchangeably used the terms ‘health lit-
eracy’ with ‘health education.’ While education often plays an 
important role in HL interventions, providing education alone 
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is not considered a ‘HL approach’ and is rarely sufficient to fa-
cilitate behavior change to sustain optimal health outcomes 
[255]. 

The ‘teach-back method’ can be considered a HL interven-
tion because it aims to improve patient-provider interactions 
by repeatedly checking and clarifying health information given 
to patients until the patient can correctly recall the information 
given [256]. Teach-back is effective across a wide range of set-
tings, populations, and outcome measures, including patients 
with T2DM [256]. Clinical trials have reported significant im-
provements in medication adherence, diet changes, and foot 
self-care in populations with T2DM after implementation of 
the ‘teach-back method’ compared with usual care control 
groups [257-259]. More recent RCTs assessing HL-based coun-
selling and/or behavior change interventions have shown posi-
tive results for patient activation (an individual’s knowledge, 
skills, and confidence for managing their health) [260], diabe-
tes self-management behaviors [260,261], and self-efficacy 
[261,262]. The evidence supporting the effectiveness of HL-
oriented interventions on physical activity and exercise in pa-
tients with T2DM is limited, although a systematic review of 
six interventional studies (n=980) reported generally positive 
findings across several physical activity behaviors in individu-
als with T2DM [263]. 

Two RCTs of a HL-oriented behavior change program for ex-
ercise, diet and nutrition reported significant improvements in 
components of sarcopenia (TUG test; gait speed; grip strength), 
as well as improvements in physical activity levels and dietary 

variety scores for older adults compared to a standard control 
group [264,265]. No studies have investigated associations be-
tween HL and sarcopenia, although, one longitudinal study 
[266] found that older adults with lower socioeconomic factors 
(education, occupation), which influence HL levels, were more 
likely to have lower grip strength and lean mass. Another cross-
sectional study in the same cohort also reported that lower edu-
cational attainment, but not occupation, was associated with 
increased likelihood for both obesity and sarcopenic obesity in 
community-dwelling older adults [267]. There is a need for fur-
ther research regarding the effectiveness of HL interventions, 
and whether they can enhance other treatments and therapies, 
in older adults with metabolic and musculoskeletal diseases 
[268].  

 
CONCLUSIONS 

There is considerable cross-sectional data highlighting the bi-
directional relationship between T2DM and sarcopenia, but 
longitudinal data are lacking. Myosteatosis is likely a signifi-
cant contributor to this relationship via direct effects on insulin 
resistance and physical function. Increasing physical activity 
and decreasing sedentary behavior have independent benefits 
on metabolic and muscle health, and may be achieved in by 
breaking up prolonged sedentary periods with brief activity or 
exercise bouts (e.g., activity breaks or ‘exercise snacks’). Never-
theless, structured exercise has the most pronounced effect on 
these aspects of health, and different modalities have distinct 

Fig. 2. Proposed relationships between emerging and established treatments for type 2 diabetes mellitus and sarcopenia.

Medications
· Incretin-based agonists 

· Myostatin-based antagonists
· Testosterone

· Selective androgen receptor 
modulators

Physical activity
· Decreasing sedentary behaviour 

· Structured exercise

Diet
· Energy restriction

· Nutrient supplementation

Endoscopic bariatric therapies
· Bariatric surgery

· Intragastric balloon

Intervention facilitators Interventions Outcomes

Health literacy 
interventions

Digital health 
interventions

Improved glycaemic  
control

Fat loss

Improved muscle 
health

Reduced risk 
of type 2 

diabetes mellitus
and/or 

sarcopenia



Management of T2DM and sarcopenia

731Diabetes Metab J 2023;47:719-742 https://e-dmj.org

but overlapping benefits, so multi-modal interventions should 
be prioritised with a key focus on resistance training in this 
population. Weight loss is the most effective method for im-
proving metabolic health and can be achieved via hypocaloric 
diets, using pharmacotherapies and/or undergoing surgical or 
non-surgical endoscopic bariatric procedures. However, in the 
absence of exercise, weight loss can have detrimental effects on 
muscle mass, potentially increasing risk for sarcopenia. As de-
scribed in Fig. 2, uptake of, and adherence to, the abovemen-
tioned treatments and therapies for improving metabolic and 
muscle health may be facilitated or enhanced via the use of 
digital health interventions or targeting individual or system-
level HL barriers.
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