Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
3 "Retina"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Reviews
Complications
Pathophysiology of Diabetic Retinopathy: The Old and the New
Sentaro Kusuhara, Yoko Fukushima, Shuntaro Ogura, Naomi Inoue, Akiyoshi Uemura
Diabetes Metab J. 2018;42(5):364-376.   Published online October 22, 2018
DOI: https://doi.org/10.4093/dmj.2018.0182
  • 13,642 View
  • 473 Download
  • 114 Web of Science
  • 108 Crossref
AbstractAbstract PDFPubReader   

Vision loss in diabetic retinopathy (DR) is ascribed primarily to retinal vascular abnormalities—including hyperpermeability, hypoperfusion, and neoangiogenesis—that eventually lead to anatomical and functional alterations in retinal neurons and glial cells. Recent advances in retinal imaging systems using optical coherence tomography technologies and pharmacological treatments using anti-vascular endothelial growth factor drugs and corticosteroids have revolutionized the clinical management of DR. However, the cellular and molecular mechanisms underlying the pathophysiology of DR are not fully determined, largely because hyperglycemic animal models only reproduce limited aspects of subclinical and early DR. Conversely, non-diabetic mouse models that represent the hallmark vascular disorders in DR, such as pericyte deficiency and retinal ischemia, have provided clues toward an understanding of the sequential events that are responsible for vision-impairing conditions. In this review, we summarize the clinical manifestations and treatment modalities of DR, discuss current and emerging concepts with regard to the pathophysiology of DR, and introduce perspectives on the development of new drugs, emphasizing the breakdown of the blood-retina barrier and retinal neovascularization.

Citations

Citations to this article as recorded by  
  • Recent Insights into the Etiopathogenesis of Diabetic Retinopathy and Its Management
    Arpon Biswas, Abhijit Deb Choudhury, Sristi Agrawal, Amol Chhatrapati Bisen, Sachin Nashik Sanap, Sarvesh Kumar Verma, Mukesh Kumar, Anjali Mishra, Shivansh Kumar, Mridula Chauhan, Rabi Sankar Bhatta
    Journal of Ocular Pharmacology and Therapeutics.2024; 40(1): 13.     CrossRef
  • GMFB/AKT/TGF‐β3 in Müller cells mediated early retinal degeneration in a streptozotocin‐induced rat diabetes model
    Tong Zhu, Yingao Li, Lilin Zhu, Jinyuan Xu, Zijun Feng, Hao Chen, Si Shi, Caiying Liu, Qingjian Ou, Furong Gao, Jieping Zhang, Caixia Jin, Jingying Xu, Jiao Li, Jingfa Zhang, Yanlong Bi, Guo‐tong Xu, Juan Wang, Haibin Tian, Lixia Lu
    Glia.2024; 72(3): 504.     CrossRef
  • The significance of glutaredoxins for diabetes mellitus and its complications
    Mengmeng Zhou, Eva-Maria Hanschmann, Axel Römer, Thomas Linn, Sebastian Friedrich Petry
    Redox Biology.2024; 71: 103043.     CrossRef
  • Proteomic analysis of diabetic retinopathy identifies potential plasma-protein biomarkers for diagnosis and prognosis
    Bent Honoré, Javad Nouri Hajari, Tobias Torp Pedersen, Tomas Ilginis, Hajer Ahmad Al-Abaiji, Claes Sepstrup Lønkvist, Jon Peiter Saunte, Dorte Aalund Olsen, Ivan Brandslund, Henrik Vorum, Carina Slidsborg
    Clinical Chemistry and Laboratory Medicine (CCLM).2024;[Epub]     CrossRef
  • Next generation therapeutics for retinal neurodegenerative diseases
    Matthew B. Appell, Jahnavi Pejavar, Ashwin Pasupathy, Sri Vishnu Kiran Rompicharla, Saed Abbasi, Kiersten Malmberg, Patricia Kolodziejski, Laura M. Ensign
    Journal of Controlled Release.2024; 367: 708.     CrossRef
  • Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip
    Thomas L. Maurissen, Alena J. Spielmann, Gabriella Schellenberg, Marc Bickle, Jose Ricardo Vieira, Si Ying Lai, Georgios Pavlou, Sascha Fauser, Peter D. Westenskow, Roger D. Kamm, Héloïse Ragelle
    Nature Communications.2024;[Epub]     CrossRef
  • Emerging role of ferroptosis in diabetic retinopathy: a review
    Ruohong Wang, Suyun Rao, Zheng Zhong, Ke Xiao, Xuhui Chen, Xufang Sun
    Journal of Drug Targeting.2024; 32(4): 393.     CrossRef
  • Serum vitamin D is substantially reduced and predicts flares in diabetic retinopathy patients
    Yong Zhuang, Zihao Zhuang, Qingyan Cai, Xin Hu, Huibin Huang
    Journal of Diabetes Investigation.2024;[Epub]     CrossRef
  • Ocular pharmacological and biochemical profiles of 6-thioguanine: a drug repurposing study
    Maria Consiglia Trotta, Carlo Gesualdo, Caterina Claudia Lepre, Marina Russo, Franca Ferraraccio, Iacopo Panarese, Ernesto Marano, Paolo Grieco, Francesco Petrillo, Anca Hermenean, Francesca Simonelli, Michele D’Amico, Claudio Bucolo, Francesca Lazzara, F
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Pharmacological mechanism and clinical study of Qiming granules in treating diabetic retinopathy based on network pharmacology and literature review
    Yuxia Huang, Jia Wang, Yu Wang, Wei Kuang, Mengjun Xie, Mei Zhang
    Journal of Ethnopharmacology.2023; 302: 115861.     CrossRef
  • Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases
    Fátima Milhano dos Santos, Sergio Ciordia, Joana Mesquita, João Paulo Castro de Sousa, Alberto Paradela, Cândida Teixeira Tomaz, Luís António Paulino Passarinha
    Cellular and Molecular Life Sciences.2023;[Epub]     CrossRef
  • Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy
    Gabriella Lupo, Aleksandra Agafonova, Alessia Cosentino, Giovanni Giurdanella, Giuliana Mannino, Debora Lo Furno, Ivana Roberta Romano, Rosario Giuffrida, Floriana D’Angeli, Carmelina Daniela Anfuso
    International Journal of Molecular Sciences.2023; 24(2): 913.     CrossRef
  • Predictive factors for microvascular recovery after treatments for diabetic retinopathy
    Junyeop Lee, Yoon-Jeon Kim, Joo-Yong Lee, Young Hee Yoon, June-Gone Kim
    BMC Ophthalmology.2023;[Epub]     CrossRef
  • Pathophysiology and diagnosis of diabetic retinopathy: a narrative review
    Mohadese Estaji, Bita Hosseini, Saeed Bozorg-Qomi, Babak Ebrahimi
    Journal of Investigative Medicine.2023; 71(3): 265.     CrossRef
  • Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases
    Fátima M. Santos, Sergio Ciordia, Joana Mesquita, Carla Cruz, João Paulo Castro e Sousa, Luís A. Passarinha, Cândida T. Tomaz, Alberto Paradela
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Hypoxia-induced transcriptional differences in African and Asian versus European diabetic cybrids
    Andrew H. Dolinko, Marilyn Chwa, Kevin Schneider, Mithalesh K. Singh, Shari Atilano, Jie Wu, M. Cristina Kenney
    Scientific Reports.2023;[Epub]     CrossRef
  • Downregulation of plasma microRNA-29c-3p expression may be a new risk factor for diabetic retinopathy
    Bora TORUS, Hakan KORKMAZ, Kuyaş H. OZTURK, Fevziye B. ŞİRİN, Mehmet ARGUN, Sonmez ŞEVİK, Levent TÖK
    Minerva Endocrinology.2023;[Epub]     CrossRef
  • Short-Term Outcomes of Intravitreal Faricimab Injection for Diabetic Macular Edema
    Sentaro Kusuhara, Maya Kishimoto-Kishi, Wataru Matsumiya, Akiko Miki, Hisanori Imai, Makoto Nakamura
    Medicina.2023; 59(4): 665.     CrossRef
  • L-type calcium channel blocker increases VEGF concentrations in retinal cells and human serum
    Anmol Kumar, Stefan Mutter, Erika B. Parente, Valma Harjutsalo, Raija Lithovius, Sinnakaruppan Mathavan, Markku Lehto, Timo P. Hiltunen, Kimmo K. Kontula, Per-Henrik Groop, Satyajit Mohapatra
    PLOS ONE.2023; 18(4): e0284364.     CrossRef
  • Efficacy and safety of curcumin in diabetic retinopathy: A protocol for systematic review and meta-analysis
    Liyuan Wang, Jiayu Xu, Tianyang Yu, Hanli Wang, Xiaojun Cai, He Sun, Godwin Ovenseri-Ogbomo
    PLOS ONE.2023; 18(4): e0282866.     CrossRef
  • Highly water-soluble diacetyl chrysin ameliorates diabetes-associated renal fibrosis and retinal microvascular abnormality in db/db mice
    Young-Hee Kang, Sin-Hye Park, Young Eun Sim, Moon-Sik Oh, Hong Won Suh, Jae-Yong Lee, Soon Sung Lim
    Nutrition Research and Practice.2023; 17(3): 421.     CrossRef
  • Preventive and management approach of triptonide, a diterpenoid compound against streptozotocin-induced diabetic retinopathy in Wistar rat model
    Chandramohan Govindasamy, Khalid S. Al-Numair, Jun Li, Weibai Chen, Guoqiang Wu
    Arabian Journal of Chemistry.2023; 16(9): 105034.     CrossRef
  • New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy
    Gustavo Bernardes Fanaro, Marcelo Rodrigues Marques, Karin da Costa Calaza, Rafael Brito, André Moreira Pessoni, Henrique Rocha Mendonça, Deborah Emanuelle de Albuquerque Lemos, José Luiz de Brito Alves, Evandro Leite de Souza, Marinaldo Pacífico Cavalcan
    Antioxidants.2023; 12(6): 1237.     CrossRef
  • Evaluation of Social Platform-Based Continuity of Care in Improving Cognitive and Prognostic Effects of Young Patients with Diabetic Retinopathy
    Guo-lan Cao, Ke-jian Chen
    Diabetes, Metabolic Syndrome and Obesity.2023; Volume 16: 1931.     CrossRef
  • Role of vascular endothelial growth factor B in nonalcoholic fatty liver disease and its potential value
    Yu-Qi Li, Lei Xin, Yu-Chi Zhao, Shang-Qi Li, Ya-Nuo Li
    World Journal of Hepatology.2023; 15(6): 786.     CrossRef
  • The rs1800469 T/T and rs1800470 C/C genotypes of the TGFB1 gene confer protection against diabetic retinopathy in a Southern Brazilian population
    Aline Rodrigues Costa, Cristine Dieter, Luís Henrique Canani, Taís Silveira Assmann, Daisy Crispim
    Genetics and Molecular Biology.2023;[Epub]     CrossRef
  • Evaluation of Self-Care in Patients with Diabetic Retinopathy
    Songül BİLTEKİN, Züleyha KILIÇ, Şefika Dilek GÜVEN
    Turkish Journal of Diabetes and Obesity.2023; 7(3): 214.     CrossRef
  • Diabetes mellitus and its influence on the incidence and process of diabetic retinopathy
    Janka Poráčová, Melinda Nagy, Marta Mydlárová Blaščáková, Mária Konečná, Vincent Sedlák, Mária Zahatňanská, Tatiana Kimáková, Hedviga Vašková, Viktória Rybárová, Mária Majherová, Ivan Uher
    Central European Journal of Public Health.2023; 31(Suppl 1): S4.     CrossRef
  • Dysregulation of the NLRP3 Inflammasome in Diabetic Retinopathy and Potential Therapeutic Targets
    Karanvir S. Raman, Joanne A. Matsubara
    Ocular Immunology and Inflammation.2022; 30(2): 470.     CrossRef
  • Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development
    Elisa Vazquez-Liebanas, Khayrun Nahar, Giacomo Bertuzzi, Annika Keller, Christer Betsholtz, Maarja Andaloussi Mäe
    Journal of Cerebral Blood Flow & Metabolism.2022; 42(2): 264.     CrossRef
  • Investigation on the Q-markers of Bushen Huoxue Prescriptions for DR treatment based on chemometric methods and spectrum-effect relationship
    Yueting Yu, Ziyu Zhu, Mengjun Xie, Liping Deng, Xuejun Xie, Mei Zhang
    Journal of Ethnopharmacology.2022; 285: 114800.     CrossRef
  • Corneal Confocal Microscopy in Type 1 Diabetes Mellitus: A Six-Year Longitudinal Study
    Stuti L. Misra, James A. Slater, Charles N. J. McGhee, Monika Pradhan, Geoffrey D. Braatvedt
    Translational Vision Science & Technology.2022; 11(1): 17.     CrossRef
  • Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature
    Thomas L. Maurissen, Georgios Pavlou, Colette Bichsel, Roberto Villaseñor, Roger D. Kamm, Héloïse Ragelle
    Journal of Personalized Medicine.2022; 12(2): 148.     CrossRef
  • Long-Term Oral Administration of Salidroside Alleviates Diabetic Retinopathy in db/db Mice
    Fei Yao, Xinyi Jiang, Ling Qiu, Zixuan Peng, Wei Zheng, Lexi Ding, Xiaobo Xia
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Classification of macular abnormalities using a lightweight CNN-SVM framework
    Xuqian Wang, Yu Gu
    Measurement Science and Technology.2022; 33(6): 065702.     CrossRef
  • Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles
    Yingying Zeng, Van Phuc Nguyen, Yanxiu Li, Do Hyun Kang, Yannis M. Paulus, Jinsang Kim
    ACS Applied Materials & Interfaces.2022; 14(16): 18182.     CrossRef
  • LncRNA FLG-AS1 Mitigates Diabetic Retinopathy by Regulating Retinal Epithelial Cell Inflammation, Oxidative Stress, and Apoptosis via miR-380-3p/SOCS6 Axis
    Rong Luo, Lan Li, Fan Xiao, Jinsong Fu
    Inflammation.2022; 45(5): 1936.     CrossRef
  • Correlation between the progression of diabetic retinopathy and inflammasome biomarkers in vitreous and serum – a systematic review
    Charisse Y. J. Kuo, Rinki Murphy, Ilva D. Rupenthal, Odunayo O. Mugisho
    BMC Ophthalmology.2022;[Epub]     CrossRef
  • The relationship between the neutrophil-to-lymphocyte ratio and diabetic retinopathy in adults from the United States: results from the National Health and nutrition examination survey
    Xiaojie He, Shanshan Qi, Xi Zhang, Jiandong Pan
    BMC Ophthalmology.2022;[Epub]     CrossRef
  • Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy
    Yufei Wang, Hongdan Yu, Jing Li, Wenqiang Liu, Shengxue Yu, Pan Lv, Lipan Zhao, Xiaobai Wang, Zhongfu Zuo, Xuezheng Liu
    Cell and Tissue Research.2022; 390(3): 367.     CrossRef
  • Prevalence and Factors Associated with Diabetic Retinopathy among Adult Diabetes Patients in Southeast Ethiopia: A Hospital-Based Cross-Sectional Study
    Biniyam Sahiledengle, Tesfaye Assefa, Wogene Negash, Anwar Tahir, Tadele Regasa, Yohannes Tekalegn, Ayele Mamo, Zinash Teferu, Damtew Solomon, Habtamu Gezahegn, Kebebe Bekele, Demisu Zenbaba, Alelign Tasew, Fikreab Desta, Zegeye Regassa, Zegeye Feleke, Ch
    Clinical Ophthalmology.2022; Volume 16: 3527.     CrossRef
  • Diabetic Retinopathy: Are lncRNAs New Molecular Players and Targets?
    Simona Cataldi, Mariagiovanna Tramontano, Valerio Costa, Marianna Aprile, Alfredo Ciccodicola
    Antioxidants.2022; 11(10): 2021.     CrossRef
  • Diosgenin protects retinal pigment epithelial cells from inflammatory damage and oxidative stress induced by high glucose by activating AMPK/Nrf2/HO‐1 pathway
    Yang Hao, Xuefeng Gao
    Immunity, Inflammation and Disease.2022;[Epub]     CrossRef
  • Selective Activation of the Wnt-Signaling Pathway as a Novel Therapy for the Treatment of Diabetic Retinopathy and Other Retinal Vascular Diseases
    Huy Nguyen, Sung-Jin Lee, Yang Li
    Pharmaceutics.2022; 14(11): 2476.     CrossRef
  • Development and validation of a predictive risk model based on retinal geometry for an early assessment of diabetic retinopathy
    Minglan Wang, Xiyuan Zhou, Dan Ning Liu, Jieru Chen, Zheng Zheng, Saiguang Ling
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Characterization of NLRP3 Inflammasome Activation in the Onset of Diabetic Retinopathy
    Charisse Y-J. Kuo, Jack J. Maran, Emma G. Jamieson, Ilva D. Rupenthal, Rinki Murphy, Odunayo O. Mugisho
    International Journal of Molecular Sciences.2022; 23(22): 14471.     CrossRef
  • VEGF Gene Polymorphism Among Diabetes Mellitus and Diabetic Retinopathy
    Samra Anees, Saima Shareef, Muhammad Roman, Shah Jahan
    Futuristic Biotechnology.2022; : 02.     CrossRef
  • Th22 Cells Induce Müller Cells Activation Via the Act1/Traf6 Pathway in Diabetic Retinopathy
    YuFei Wang, Hongdan Yu, Jing Li, Wenqiang Liu, Shengxue Yu, Pan Lv, Lipan Zhao, Xiaobai Wang, Zhongfu Zuo, Xuezheng Liu
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Pathogenesis of diabetic macular edema: the role of pro-inflammatory and vascular factors. Aliterature review
    M.L. Kyryliuk, S.A. Suk
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine).2022; 18(3): 180.     CrossRef
  • Effects of emixustat hydrochloride in patients with proliferative diabetic retinopathy: a randomized, placebo-controlled phase 2 study
    Ryo Kubota, Chirag Jhaveri, John M. Koester, Jeffrey K. Gregory
    Graefe's Archive for Clinical and Experimental Ophthalmology.2021; 259(2): 369.     CrossRef
  • Transient receptor potential vanilloid 4 channel deletion regulates pathological but not developmental retinal angiogenesis
    Holly C. Cappelli, Brianna D. Guarino, Anantha K. Kanugula, Ravi K. Adapala, Vidushani Perera, Matthew A. Smith, Sailaja Paruchuri, Charles K. Thodeti
    Journal of Cellular Physiology.2021; 236(5): 3770.     CrossRef
  • Involvement of miR‐126 rs4636297 and miR‐146a rs2910164 polymorphisms in the susceptibility for diabetic retinopathy: a case–control study in a type 1 diabetes population
    Eloísa Toscan Massignam, Cristine Dieter, Felipe Mateus Pellenz, Taís Silveira Assmann, Daisy Crispim
    Acta Ophthalmologica.2021;[Epub]     CrossRef
  • Retinal Vascular Endothelial Cell Dysfunction and Neuroretinal Degeneration in Diabetic Patients
    Malgorzata Mrugacz, Anna Bryl, Katarzyna Zorena
    Journal of Clinical Medicine.2021; 10(3): 458.     CrossRef
  • Factors based on optical coherence tomography correlated with vision impairment in diabetic patients
    Hiroaki Endo, Satoru Kase, Hikari Tanaka, Mitsuo Takahashi, Satoshi Katsuta, Yasuo Suzuki, Minako Fujii, Susumu Ishida, Manabu Kase
    Scientific Reports.2021;[Epub]     CrossRef
  • Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases
    Bo Jiao, Shiyang Liu, Xi Tan, Pei Lu, Danning Wang, Hui Xu
    Biomedicine & Pharmacotherapy.2021; 137: 111329.     CrossRef
  • Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss
    Maarja A. Mäe, Liqun He, Sofia Nordling, Elisa Vazquez-Liebanas, Khayrun Nahar, Bongnam Jung, Xidan Li, Bryan C. Tan, Juat Chin Foo, Amaury Cazenave-Gassiot, Markus R. Wenk, Yvette Zarb, Barbara Lavina, Susan E. Quaggin, Marie Jeansson, Chengua Gu, David
    Circulation Research.2021;[Epub]     CrossRef
  • VEGFR1 signaling in retinal angiogenesis and microinflammation
    Akiyoshi Uemura, Marcus Fruttiger, Patricia A. D'Amore, Sandro De Falco, Antonia M. Joussen, Florian Sennlaub, Lynne R. Brunck, Kristian T. Johnson, George N. Lambrou, Kay D. Rittenhouse, Thomas Langmann
    Progress in Retinal and Eye Research.2021; 84: 100954.     CrossRef
  • Changes in Gene Expression Profiling and Phenotype in Aged Multidrug Resistance Protein 4-Deficient Mouse Retinas
    Kyung Woo Kim, Sentaro Kusuhara, Atsuko Katsuyama-Yoshikawa, Sho Nobuyoshi, Megumi Kitamura, Sotaro Mori, Noriyuki Sotani, Kaori Ueda, Wataru Matsumiya, Akiko Miki, Takuji Kurimoto, Hisanori Imai, Makoto Nakamura
    Antioxidants.2021; 10(3): 455.     CrossRef
  • Circular RNAs: Novel target of diabetic retinopathy
    Huan-ran Zhou, Hong-yu Kuang
    Reviews in Endocrine and Metabolic Disorders.2021; 22(2): 205.     CrossRef
  • MicroRNA-431-5p encapsulated in serum extracellular vesicles as a biomarker for proliferative diabetic retinopathy
    Bo Yu, Mengran Xiao, Fuhua Yang, Jing Xiao, Hui Zhang, Lin Su, Xiaomin Zhang, Xiaorong Li
    The International Journal of Biochemistry & Cell Biology.2021; 135: 105975.     CrossRef
  • EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress
    Roberta Giordo, Yusra M. A. Ahmed, Hilda Allam, Salah Abusnana, Lucia Pappalardo, Gheyath K. Nasrallah, Arduino Aleksander Mangoni, Gianfranco Pintus
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Pharmacokinetics of genistein distribution in blood and retinas of diabetic and non-diabetic rats
    T. Hakami, M.I. Mahmoud, E. de Juan, M. Cooney
    Drug Metabolism and Pharmacokinetics.2021; 39: 100404.     CrossRef
  • Nimbolide ameliorates the streptozotocin-induced diabetic retinopathy in rats through the inhibition of TLR4/NF-κB signaling pathway
    Xiangwen Shu, Yali Hu, Chao Huang, Ning Wei
    Saudi Journal of Biological Sciences.2021; 28(8): 4255.     CrossRef
  • Basic regulatory effects and clinical value of metalloproteinase-14 and extracellular matrix metalloproteinase inducer in diabetic retinopathy
    Shuyan Li, Shiheng Lu, Lei Zhang, Shasha Liu, Lei Wang, Kai Lin, Jialun Du, Meixia Song
    Materials Express.2021; 11(6): 873.     CrossRef
  • Reduced Acrolein Detoxification in akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations
    Haozhe Qi, Felix Schmöhl, Xiaogang Li, Xin Qian, Christoph T. Tabler, Katrin Bennewitz, Carsten Sticht, Jakob Morgenstern, Thomas Fleming, Nadine Volk, Ingrid Hausser, Elena Heidenreich, Rüdiger Hell, Peter Paul Nawroth, Jens Kroll
    Advanced Science.2021;[Epub]     CrossRef
  • The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy
    Honglian Wu, Mengqi Wang, Xiaorong Li, Yan Shao
    Human Cell.2021; 34(6): 1617.     CrossRef
  • Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury
    Steven F. Abcouwer, Sumathi Shanmugam, Arivalagan Muthusamy, Cheng-mao Lin, Dejuan Kong, Heather Hager, Xuwen Liu, David A. Antonetti
    Journal of Neuroinflammation.2021;[Epub]     CrossRef
  • Diferenças de mensuração de acuidade visual e velocidade de leitura para perto entre pacientes com retinopatia diabética. Repercussão entre conceitos de deficiência visual parcial e cegueira legal
    Roberta Freitas Momenté, Isabella Couto Amaral, Luiz Guilherme Coimbra de Brito, João Gabriel Volpato Ferraresi, Maria Luisa Gois da Fonsêca, Nadyr Antônia Damasceno, Luiz Claudio Santos de Souza Lima, Mauricio Bastos Pereira, Eduardo de França Damasceno
    Revista Brasileira de Oftalmologia.2021;[Epub]     CrossRef
  • Maintaining blood retinal barrier homeostasis to attenuate retinal ischemia-reperfusion injury by targeting the KEAP1/NRF2/ARE pathway with lycopene
    Hao Huang, Xielan Kuang, Xiaobo Zhu, Hao Cheng, Yuxiu Zou, Han Du, Han Tang, Linbin Zhou, Jingshu Zeng, Huijun Liu, Jianhua Yan, Chongde Long, Huangxuan Shen
    Cellular Signalling.2021; 88: 110153.     CrossRef
  • Luteolin, an aryl hydrocarbon receptor antagonist, alleviates diabetic retinopathy by regulating the NLRP/NOX4 signalling pathway: Experimental and molecular docking study
    Y. Yang, M. Zhou, H. Liu
    Physiology International.2021; 108(2): 172.     CrossRef
  • ALDH2/SIRT1 Contributes to Type 1 and Type 2 Diabetes-Induced Retinopathy through Depressing Oxidative Stress
    Mengshan He, Pan Long, Tao Chen, Kaifeng Li, Dongyu Wei, Yufei Zhang, Wenjun Wang, Yonghe Hu, Yi Ding, Aidong Wen, Daniela Ribeiro
    Oxidative Medicine and Cellular Longevity.2021; 2021: 1.     CrossRef
  • Looking Ahead: Visual and Anatomical Endpoints in Future Trials of Diabetic Macular Ischemia
    Chui Ming Gemmy Cheung, Elizabeth Pearce, Beau Fenner, Piyali Sen, Victor Chong, Sobha Sivaprasad
    Ophthalmologica.2021; 244(5): 451.     CrossRef
  • The effect of psychotherapy on anxiety, depression, and quality of life in patients with diabetic retinopathy
    Suiping Li, Hong Liu, Xian Zhu
    Medicine.2021; 100(51): e28386.     CrossRef
  • Changes in Ocular Blood Flow after Ranibizumab Intravitreal Injection for Diabetic Macular Edema Measured Using Laser Speckle Flowgraphy
    Lisa Toto, Federica Evangelista, Pasquale Viggiano, Emanuele Erroi, Giada D’Onofrio, Daniele Libertini, Annamaria Porreca, Rossella D’Aloisio, Parravano Mariacristina, Luca Di Antonio, Marta Di Nicola, Rodolfo Mastropasqua
    BioMed Research International.2020; 2020: 1.     CrossRef
  • microRNA Expression Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients and Differences from Patients Treated with Anti-VEGF Therapy
    Julian Friedrich, David H. W. Steel, Reinier O. Schlingemann, Michael J. Koss, Hans-Peter Hammes, Guido Krenning, Ingeborg Klaassen
    Translational Vision Science & Technology.2020; 9(6): 16.     CrossRef
  • Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials
    Jose Javier Garcia-Medina, Elena Rubio-Velazquez, Elisa Foulquie-Moreno, Ricardo P Casaroli-Marano, Maria Dolores Pinazo-Duran, Vicente Zanon-Moreno, Monica del-Rio-Vellosillo
    Antioxidants.2020; 9(6): 561.     CrossRef
  • Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases
    C. G. Schalkwijk, C. D. A. Stehouwer
    Physiological Reviews.2020; 100(1): 407.     CrossRef
  • Pericytes, inflammation, and diabetic retinopathy
    Benjamin G. Spencer, Jose J. Estevez, Ebony Liu, Jamie E. Craig, John W. Finnie
    Inflammopharmacology.2020; 28(3): 697.     CrossRef
  • Eye hemodynamic data and biochemical parameters of the lacrimal fluid of patients with non-proliferative diabetic retinopathy
    Guzal Kangilbaeva, Fazilat Bakhritdinova, Iroda Nabieva, Aziza Jurabekova
    Data in Brief.2020; 32: 106237.     CrossRef
  • Endocannabinoids in aqueous humour of patients with or without diabetes
    Patrick Richardson, Catherine Ortori, Dave Barrett, Saoirse O'Sullivan, Iskandar Idris
    BMJ Open Ophthalmology.2020; 5(1): e000425.     CrossRef
  • A pyruvate dehydrogenase kinase inhibitor prevents retinal cell death and improves energy metabolism in rat retinas after ischemia/reperfusion injury
    Kota Sato, Seiya Mochida, Daisuke Tomimoto, Takahiro Konuma, Naoki Kiyota, Satoru Tsuda, Yukihiro Shiga, Kazuko Omodaka, Toru Nakazawa
    Experimental Eye Research.2020; 193: 107997.     CrossRef
  • The Role of Bone Morphogenetic Proteins in Diabetic Complications
    Nimna Perera, Rebecca H. Ritchie, Mitchel Tate
    ACS Pharmacology & Translational Science.2020; 3(1): 11.     CrossRef
  • Increased Ephrin-B2 expression in pericytes contributes to retinal vascular death in rodents
    Maha Coucha, Amy C. Barrett, Joseph Bailey, Maryam Abdelghani, Mohammed Abdelsaid
    Vascular Pharmacology.2020; 131: 106761.     CrossRef
  • Mitochondrial Defects Drive Degenerative Retinal Diseases
    Deborah A. Ferrington, Cody R. Fisher, Renu A. Kowluru
    Trends in Molecular Medicine.2020; 26(1): 105.     CrossRef
  • Fli1 deficiency induces endothelial adipsin expression, contributing to the onset of pulmonary arterial hypertension in systemic sclerosis
    Takuya Miyagawa, Takashi Taniguchi, Ryosuke Saigusa, Maiko Fukayama, Takehiro Takahashi, Takashi Yamashita, Megumi Hirabayashi, Shunsuke Miura, Kouki Nakamura, Ayumi Yoshizaki, Shinichi Sato, Yoshihide Asano
    Rheumatology.2020; 59(8): 2005.     CrossRef
  • Natriuretic Peptides Attenuate Retinal Pathological Neovascularization Via Cyclic Guanosine Monophosphate Signaling in Pericytes and Astrocytes
    Katarina Špiranec Spes, Sabrina Hupp, Franziska Werner, Franziska Koch, Katharina Völker, Lisa Krebes, Ulrike Kämmerer, Katrin G. Heinze, Barbara M. Braunger, Michaela Kuhn
    Arteriosclerosis, Thrombosis, and Vascular Biology.2020; 40(1): 159.     CrossRef
  • Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy
    Shuai Wang, Shanshan Du, Wenzhan Wang, Fengyan Zhang
    Biomedicine & Pharmacotherapy.2020; 130: 110573.     CrossRef
  • The role of CD44 in pathological angiogenesis
    Li Chen, Chenying Fu, Qing Zhang, Chengqi He, Feng Zhang, Quan Wei
    The FASEB Journal.2020; 34(10): 13125.     CrossRef
  • Associations between alcohol intake and diabetic retinopathy risk: a systematic review and meta-analysis
    Chen Chen, Zhaojun Sun, Weigang Xu, Jun Tan, Dan Li, Yiting Wu, Ting Zheng, Derong Peng
    BMC Endocrine Disorders.2020;[Epub]     CrossRef
  • Alpha-Smooth Muscle Actin-Positive Perivascular Cells in Diabetic Retina and Choroid
    Soo Jin Kim, Sang A. Kim, Yeong A. Choi, Do Young Park, Junyeop Lee
    International Journal of Molecular Sciences.2020; 21(6): 2158.     CrossRef
  • The G‐protein‐coupled chemoattractant receptor Fpr2 exacerbates neuroglial dysfunction and angiogenesis in diabetic retinopathy
    Ying Yu, Shengding Xue, Keqiang Chen, Yingying Le, Rongrong Zhu, Shiyi Wang, Shuang Liu, Xinliang Cheng, Huaijin Guan, Ji Ming Wang, Hui Chen
    FASEB BioAdvances.2020; 2(10): 613.     CrossRef
  • Dual-Acting Antiangiogenic Gene Therapy Reduces Inflammation and Regresses Neovascularization in Diabetic Mouse Retina
    Rute S. Araújo, Diogo B. Bitoque, Gabriela A. Silva
    Molecular Therapy - Nucleic Acids.2020; 22: 329.     CrossRef
  • The cells involved in the pathological process of diabetic retinopathy
    Songtao Yang, Jiaoyue Zhang, Lulu Chen
    Biomedicine & Pharmacotherapy.2020; 132: 110818.     CrossRef
  • The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress
    Hsin-Yi Chen, Yi-Jung Ho, Hsiu-Chuan Chou, En-Chi Liao, Yi-Ting Tsai, Yu-Shan Wei, Li-Hsun Lin, Meng-Wei Lin, Yi-Shiuan Wang, Mei-Lan Ko, Hong-Lin Chan
    International Journal of Molecular Sciences.2020; 21(18): 6482.     CrossRef
  • Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs
    Ashay D. Bhatwadekar, Varun Rameswara
    Expert Opinion on Investigational Drugs.2020; 29(12): 1431.     CrossRef
  • Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases
    Xue Yang, Xiao-Wei Yu, Dan-Dan Zhang, Zhi-Gang Fan
    Chinese Medical Journal.2020; 133(21): 2586.     CrossRef
  • Immunosubunit β5i Knockout Suppresses Neovascularization and Restores Autophagy in Retinal Neovascularization by Targeting ATG5 for Degradation
    Liyang Ji, Li Li, Ying Zhao, Shengqiang Liu, Jingmin Li, Jinsong Zhang, Qi Zhao, Shuai Wang
    Investigative Opthalmology & Visual Science.2020; 61(14): 30.     CrossRef
  • Dipeptidyl Peptidase-4 Inhibitors versus Other Antidiabetic Drugs Added to Metformin Monotherapy in Diabetic Retinopathy Progression: A Real World-Based Cohort Study
    Yoo-Ri Chung, Kyoung Hwa Ha, Hyeon Chang Kim, Sang Jun Park, Kihwang Lee, Dae Jung Kim
    Diabetes & Metabolism Journal.2019; 43(5): 640.     CrossRef
  • Age-related changes of the human retinal vessels: Possible involvement of lipid peroxidation
    Tapas Chandra Nag, Meenakshi Maurya, Tara Sankar Roy
    Annals of Anatomy - Anatomischer Anzeiger.2019; 226: 35.     CrossRef
  • Human iPSCs-Derived Endothelial Cells with Mutation in HNF1A as a Model of Maturity-Onset Diabetes of the Young
    Kachamakova-Trojanowska, Stepniewski, Dulak
    Cells.2019; 8(11): 1440.     CrossRef
  • Diabetic Retinopathy–An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes
    Stephen H. Sinclair, Stanley S. Schwartz
    Frontiers in Endocrinology.2019;[Epub]     CrossRef
  • Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy
    Parviz Mammadzada, Juliette Bayle, Johann Gudmundsson, Anders Kvanta, Helder André
    Journal of Clinical Medicine.2019; 8(12): 2217.     CrossRef
  • RANKL blockade suppresses pathological angiogenesis and vascular leakage in ischemic retinopathy
    Sangmi Ock, Soyoung Park, Junyeop Lee, Jaetaek Kim
    Biochemical and Biophysical Research Communications.2019; 516(2): 350.     CrossRef
  • EndogenousClostridium perfringensPanophthalmitis with Potential Entry Port from Diverticulitis Exacerbated by Proliferative Diabetic Retinopathy
    Vamsee Neerukonda, Anny M. S. Cheng, Swetha Dhanireddy, Samuel Alpert, Han Y. Yin
    Case Reports in Ophthalmological Medicine.2019; 2019: 1.     CrossRef
  • Attenuation of Retinal Endothelial Vasodilator Function in a Rat Model of Retinopathy of Prematurity
    Ayuki Nakano, Asami Mori, Shiho Arima, Daiki Asano, Akane Morita, Kenji Sakamoto, Tohru Nagamitsu, Tsutomu Nakahara
    Current Eye Research.2019; 44(12): 1360.     CrossRef
  • Efficacy of fenofibrate for diabetic retinopathy
    Xing-jie Su, Lin Han, Yan-Xiu Qi, Hong-wei Liu
    Medicine.2019; 98(14): e14999.     CrossRef
  • Nutraceuticals for the Treatment of Diabetic Retinopathy
    Maria Grazia Rossino, Giovanni Casini
    Nutrients.2019; 11(4): 771.     CrossRef
  • Efficacy of ranibizumab for the treatment of diabetic retinopathy
    Yong-bo Ren, Xing-jie Su, Yan-xiu Qi, He-qun Luan, Qi Sun
    Medicine.2019; 98(17): e15409.     CrossRef
Interrelationships between the Retinal Neuroglia and Vasculature in Diabetes
Timothy S. Kern
Diabetes Metab J. 2014;38(3):163-170.   Published online June 17, 2014
DOI: https://doi.org/10.4093/dmj.2014.38.3.163
  • 3,243 View
  • 35 Download
  • 32 Web of Science
  • 30 Crossref
AbstractAbstract PDFPubReader   

For years, diabetic retinopathy has been defined based on vascular lesions, and neural abnormalities were not regarded as important. This review summarizes evidence that the neural retina has important effects on the retinal vasculature under normal conditions, and the interaction between the retinal neuroglial cells and vascular function is altered in diabetes. Importantly, new evidence raises a possibility that abnormalities within retinal neuroglial cells (notably photoreceptors) might actually be causing or initiating the vascular disease in diabetic retinopathy.

Citations

Citations to this article as recorded by  
  • Thioredoxin 1 overexpression attenuated diabetes‐induced endoplasmic reticulum stress in Müller cells via apoptosis signal‐regulating kinase 1
    Xuebin Yu, Qiufeng Teng, Kaimin Bao, Maryam Chudhary, Hui Qi, Wenying Zhou, Hongxin Che, Junli Liu, Xiang Ren, Li Kong
    Journal of Cellular Biochemistry.2023; 124(3): 421.     CrossRef
  • Implications of Diabetes-Induced Altered Metabolites on Retinal Neurodegeneration
    Dalia I. Aldosari, Ajamaluddin Malik, Abdullah S. Alhomida, Mohammad S. Ola
    Frontiers in Neuroscience.2022;[Epub]     CrossRef
  • A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy
    Drake W. Lem, Dennis L. Gierhart, Pinakin Gunvant Davey
    Nutrients.2021; 13(7): 2441.     CrossRef
  • Bioactive Compound and Nanotechnology: A Novel Delivery Perspective for Diabetic Retinopathy
    Anima Debbarma, Probin Kr Roy, Samia B. Barbhuiya, Jayita Das, Laldinchhana, Hauzel Lalhlenmawia
    Current Bioactive Compounds.2021;[Epub]     CrossRef
  • Looking Ahead: Visual and Anatomical Endpoints in Future Trials of Diabetic Macular Ischemia
    Chui Ming Gemmy Cheung, Elizabeth Pearce, Beau Fenner, Piyali Sen, Victor Chong, Sobha Sivaprasad
    Ophthalmologica.2021; 244(5): 451.     CrossRef
  • Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice
    Fang Liu, Alan B. Saul, Prahalathan Pichavaram, Zhimin Xu, Madhuri Rudraraju, Payaningal R. Somanath, Sylvia B. Smith, Ruth B. Caldwell, S. Priya Narayanan
    Journal of Clinical Medicine.2020; 9(2): 340.     CrossRef
  • Targeting Neurovascular Interaction in Retinal Disorders
    Zhongjie Fu, Ye Sun, Bertan Cakir, Yohei Tomita, Shuo Huang, Zhongxiao Wang, Chi-Hsiu Liu, Steve S. Cho, William Britton, Timothy S. Kern, David A. Antonetti, Ann Hellström, Lois E.H. Smith
    International Journal of Molecular Sciences.2020; 21(4): 1503.     CrossRef
  • Glycine receptor is differentially expressed in the rat retina at early stages of streptozotocin-induced diabetes
    Elizabeth Morales-Calixto, Miguel Ángel Velázquez-Flores, Gustavo Sánchez-Chávez, Ruth Ruiz Esparza-Garrido, Rocío Salceda
    Neuroscience Letters.2019; 712: 134506.     CrossRef
  • Effect of Autophagy Modulators on Vascular, Glial, and Neuronal Alterations in the Oxygen-Induced Retinopathy Mouse Model
    Paula V. Subirada, María C. Paz, Magali E. Ridano, Valeria E. Lorenc, Claudio M. Fader, Gustavo A. Chiabrando, María C. Sánchez
    Frontiers in Cellular Neuroscience.2019;[Epub]     CrossRef
  • Retinal Sensitivity Loss Correlates with Deep Capillary Plexus Impairment in Diabetic Macular Ischemia
    Fabio Scarinci, Monica Varano, Mariacristina Parravano
    Journal of Ophthalmology.2019; 2019: 1.     CrossRef
  • Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy
    S. Priya Narayanan, Esraa Shosha, Chithra D Palani
    Pharmacological Research.2019; 147: 104299.     CrossRef
  • Translational research in retinal vascular disease. An approach
    Toke Bek
    Acta Ophthalmologica.2019; 97(5): 441.     CrossRef
  • Protective Effects of Leukemia Inhibitory Factor on Retinal Vasculature and Cells in Streptozotocin-induced Diabetic Mice
    Xiu-Fen Yang, Ying-Xiang Huang, Ming Lan, Tao-Ran Zhang, Jie Zhou
    Chinese Medical Journal.2018; 131(1): 75.     CrossRef
  • SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets
    Maria Vähätupa, Janika Nättinen, Antti Jylhä, Ulla Aapola, Marko Kataja, Peeter Kööbi, Tero A. H. Järvinen, Hannu Uusitalo, Hannele Uusitalo-Järvinen
    Investigative Opthalmology & Visual Science.2018; 59(8): 3294.     CrossRef
  • Association Between Vessel Density and Visual Acuity in Patients With Diabetic Retinopathy and Poorly Controlled Type 1 Diabetes
    Bénédicte Dupas, Wilfried Minvielle, Sophie Bonnin, Aude Couturier, Ali Erginay, Pascale Massin, Alain Gaudric, Ramin Tadayoni
    JAMA Ophthalmology.2018; 136(7): 721.     CrossRef
  • Diabetic macular oedema: clinical risk factors and emerging genetic influences
    Ebony Liu, Jamie E Craig, Kathryn Burdon
    Clinical and Experimental Optometry.2017; 100(6): 569.     CrossRef
  • Comparison of spectral-domain optical coherence tomography for intra-retinal layers thickness measurements between healthy and diabetic eyes among Chinese adults
    Shu-ting Li, Xiang-ning Wang, Xin-hua Du, Qiang Wu, Demetrios G. Vavvas
    PLOS ONE.2017; 12(5): e0177515.     CrossRef
  • RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis
    Ye Sun, Chi‐Hsiu Liu, Zhongxiao Wang, Steven S. Meng, Samuel B. Burnim, John Paul SanGiovanni, Theodore M. Kamenecka, Laura A. Solt, Jing Chen
    The FASEB Journal.2017; 31(10): 4492.     CrossRef
  • Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina
    Dalia Al-Dosari, Mohammed Ahmed, Salim Al-Rejaie, Abdullah Alhomida, Mohammad Ola
    Nutrients.2017; 9(10): 1161.     CrossRef
  • Do photoreceptor cells cause the development of retinal vascular disease?
    Timothy S. Kern
    Vision Research.2017; 139: 65.     CrossRef
  • Putative protective role of lutein and zeaxanthin in diabetic retinopathy
    Kumari Neelam, Catherina J Goenadi, Katherine Lun, Chee Chew Yip, Kah-Guan Au Eong
    British Journal of Ophthalmology.2017; 101(5): 551.     CrossRef
  • Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy
    Katherine J Wert, Vinit B Mahajan, Lijuan Zhang, Yuanqing Yan, Yao Li, Joaquin Tosi, Chun Wei Hsu, Takayuki Nagasaki, Kerstin M Janisch, Maria B Grant, MaryAnn Mahajan, Alexander G Bassuk, Stephen H Tsang
    Signal Transduction and Targeted Therapy.2016;[Epub]     CrossRef
  • Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats
    Mykhailo M. Guzyk, Artem A. Tykhomyrov, Victor S. Nedzvetsky, Irina V. Prischepa, Tatiana V. Grinenko, Lesya V. Yanitska, Tamara M. Kuchmerovska
    Neurochemical Research.2016; 41(10): 2526.     CrossRef
  • Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa
    V. Sánchez-Vallejo, S. Benlloch-Navarro, R. López-Pedrajas, F.J. Romero, M. Miranda
    Pharmacological Research.2015; 99: 276.     CrossRef
  • Primary Retinal Cultures as a Tool for Modeling Diabetic Retinopathy: An Overview
    Andrea Matteucci, Monica Varano, Cinzia Mallozzi, Lucia Gaddini, Marika Villa, Sara Gabrielli, Giuseppe Formisano, Flavia Pricci, Fiorella Malchiodi-Albedi
    BioMed Research International.2015; 2015: 1.     CrossRef
  • Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy
    Renu A. Kowluru, Anjan Kowluru, Manish Mishra, Binit Kumar
    Progress in Retinal and Eye Research.2015; 48: 40.     CrossRef
  • Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence
    Rafael Simó, Cristina Hernández
    Progress in Retinal and Eye Research.2015; 48: 160.     CrossRef
  • SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth
    Ye Sun, Meihua Ju, Zhiqiang Lin, Thomas W. Fredrick, Lucy P. Evans, Katherine T. Tian, Nicholas J. Saba, Peyton C. Morss, William T. Pu, Jing Chen, Andreas Stahl, Jean-Sébastien Joyal, Lois E. H. Smith
    Science Signaling.2015;[Epub]     CrossRef
  • Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats
    Damián Dorfman, Marcos L. Aranda, Ruth E. Rosenstein, Rafael Linden
    PLOS ONE.2015; 10(8): e0136637.     CrossRef
  • Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy
    Lorena Perrone, Carmela Matrone, Lalit P. Singh
    Journal of Ophthalmology.2014; 2014: 1.     CrossRef
Original Article
Study on the Methylglyoxal-induced Apoptosis in Bovine Retinal Pericytes.
Jaetaek Kim, Seok Hong Lee, Jang Won Son, Jeong An Lee, Yeon Sahng Oh, Soon Hyun Shinn
Korean Diabetes J. 2004;28(3):199-207.   Published online June 1, 2004
  • 818 View
  • 18 Download
AbstractAbstract PDF
BACKGROUND
One of the histopathological hallmarks of early diabetic retinopathy is the loss of pericytes. Evidences suggest that this pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the influence of methylglyoxal(MGO), a reactive alpha-dicarbonyl compound of glucose metabolism, on the apoptotic cell death in retinal pericytes. METHODS: Primary cultures of retinal pericytes were prepared from isolated bovine retinal microvessels. The cells were incubated under normoglycemic conditions after treatment with 200-800muM methylglyoxal for 6 hours. The cell viability was assessed using the MTT assay. The apoptosis and intracellular reactive oxygen species(ROS) generation were measured using an ELISA kit and flow cytometry, respectively. The NF-kappaB activation was detected by immunocytochemistry. RESULTS: MGO produced a progressive cytotoxic effect on the retinal pericytes. An analysis of the internucleosomal DNA fragmentation by ELISA showed that MGO(200 to 800muM) induced apoptosis in a concentration-dependent manner. ROS were generated earlier and the antioxidant, N-acetyl cysteine, inhibited the MGO-induced apoptosis. The NF-kappaB activation and increased caspase-3 activity were detected. The apoptosis was also inhibited by the caspase-3 inhibitor, Z-DEVD-fmk, or the NF-kappaB inhibitor, pyrrolidine dithiocarbamate. CONCLUSION: These results suggest that the elevated MGO levels observed in diabetes may cause apoptosis in the retinal pericytes through an oxidative stress mechanism, and suggests that the nuclear activation of NF-kappaB is involved in the apoptotic process.

Diabetes Metab J : Diabetes & Metabolism Journal